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Abstract: In this work, the existence of a unique solution of
Volterra-Hammerstein integral equation of the second kind (V-HIESK)
is discussed. The Volterra integral term (VIT) is considered in time with
a continuous kernel, while the Fredholm integral term (FIT) is
considered in position with a generalized singular kernel. Using a
numerical technique, V-HIESK is reduced to a nonlinear system of
Fredholm integral equations (SFIEs). Using Toeplitz matrix method we
have a nonlinear algebraic system of equations. Also, many important
theorems related to the existence and uniqueness of the produced
algebraic system are derived. Finally, some numerical examples when
the kernel takes the logarithmic, Carleman, and Cauchy forms, are
considered.
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1. INTRODUCTION

Many authors have interested in solving the Volterra-Fredholm integral equation,
Abdou and Salama, in [1], obtained the solution in one, two and three
dimensional for the V-FIT of the first kind using spectral relationships. In [2],
EL-Borai et al. studied the existence and uniqueness of solution of nonlinear

16



Al-Bugami A. M. / Progress in Applied Mathematics, 6(2), 2013

integral equation of the second kind of type V-FIE. Maleknejad and Sohrabi, in
[3], solved the nonlinear V-F-Hammerstein integral equations in terms of
Legendre polynomials. In [4], Ezzati and Najafalizadeh, used Chebyshev
polynomials to solve linear and nonlinear Volterra-Fredholm integral equations.
Shazad, in [5], solved Volterra-Fredholm integral equation by using least squares
technique. Shali et al, in [6], studied the numerical solvability of a class of
nonlinear Volterra-Fredholm integral equations.

In this work, we consider the V-HIESK

p(x,t) = T (1) + A[ [F(t, k(900 - gD (y. 7,4y, o)dyd = (1)

The integral equation (1) is considered in time, for VIT and position for FIT.
The functions 4(/g(x) —g(») /), F(t,7) and Ax, ¢) are given and called the kernel
of FIT, VIT and the free term, respectively. The constant defines the kind of the
integral equation and 4 is a real parameter (may be complex and has physical
meaning).

Also, Q is the domain of integration with respect to position, and the time
t [0, T], T <oo.While ¢(x, ) is the unknown function to be determined in the

space L,(€Q)xCI[0,T].

2. THE EXISTENCE AND UNIQUENESS SOLUTION OF
V-HIE WITH A GENERALIZED SINGULAR KERNEL:

In this part, successive approximations method and Banach fixed point theorem
will be used as sources to prove the existence and uniqueness solution of the

integral equation (1) in the spacel,(Q)xC[0,T ], where £, k ,F and 7y are

known functions . K ( g (x ) —g () ) is called the generalized kernel of
Hammerstein and /{¢,7 ) is called the kernel of Volterra with respect to time.

Also, the modified Schauder fixed point theorem will be considered to prove
the existence of at least one solution of Eq. (1), when the Lipschitz condition is
not satisfied.

2.1 The existence and uniqueness solution using Picard’s
method :

To discuss the existence and uniqueness solution of Eq. (1), we write it in the
integral operator form

Wg(x,1) _1 f(x,t)+iW¢(x,t), (u#0) 2)
yz u
where

Wa(x,t) = [ [ F(t.2)k(9(x) — g(y)r(y. 7.4y, 7))dyd 3)
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Also, we assume the following conditions

a- The kernel of position ¥ ( g (x ) —g () ), satisfies the discontinuity
conditionin L [a,b]

q 1
p ™ a * * .
{j{ﬂkqg(x)—g(y)m dx}Pdy}d =¢” (p>1, ¢” isa constant)
Q0
b- The kernel of time A(¢,t)eC[0,T ]satisfies F(¢,t) <M, M is a constant,
Vet e[0,7,08t<t<T<

c- The given function £ (x ,t) with its partial derivatives with respect to
position x and time ¢are continuous in the space L,(€2)xC[0,T], and its norm

is defined as

| f (x,t)||Lp(Q)xc[0’T] = max =G (G is a constant)

0<t<T

j{ﬂ f(x,1)" dx}?dr

d- The known continuous function v (¢,x,$ (x,t)) , for the constants Q > P,

and Q > Q, , satisfies the following conditions

® max‘ [ x g0 0" 37 de| < QISX I, .0

(2) |7/(t1 X1¢1(X1t)) _j/(t’ X, ¢2(X’t))| <N (t’ X)|¢1(X’t) _¢2(X!t)|

where

IN(t, x)

= max =P <o
0<t<T

Lp(@)c[oT]

j{“N(r, X)|° dx}? dz

Using the method of successive approximations(Picard's method), we set

ug, (60 = T (0 + 2] [FEt. k(900 - gDy (z.y. 4, 1(y. 7))dydr,

(4)
(n>1)
with ¢, (x,t) =f (X,t)
For ease of manipulation, it is convenient to introduce
v, (X, 1) =¢,(x,t) =4, _,(x.,1) Q)

Hence, we get
(0 =2 pi (x 1), px.t)=f (x.1) (6)

From Eq. (1), we obtain
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lllg, (-4, (x.0)]

t

[ JIF@DIk(900- g7y, (v, 7D =72, .61,y D) dyde

0Q
with the aid of conditions (b) and (d-2) we have

llg, (-4, (x.0)]

<

t

[ ka0 - gDING VI, (v.7) =, o (v, D] dyde
0Q

Applying Holder inequality to Hammerstein integral term, and taking in account
(5), the above inequality becomes

<jAM

ARy
t

JAING )

0 Q

L 1
<A™ v, (y,7)| dy} dzy’

}(I ko~ gl d* mex

Q

Thus, we have

v, (B

A

S L.

4

In the light of the conditions (a) and (d-2), the last inequality reduces to

M ” N (t’ X)” ”l//n—l(xi t)” r[;gta;.(

[ k(a() - a(D|” dx}* ey} '3z
t

A .
v, (x.O|<olv. . (xt)] (o= u Mc'QT), (n=>1) (7

|4

When n=1 the inequality (7) takes the form

||t,yl(x,t)|| <oG (8)
By induction, we have

|, (x,t)|<c"G, n=01,.. (9)
Since (9) is obviously true for n =0,1,...; then it holds for all n. This bound makes
the sequence {¢, (X ,t)}in (6) converges, so we can write

P = Yy (x 1) (10)

The series (10) is uniformly convergent since the terms ¥, (X ,t) are dominated

by o' and o' <lfori— .
To prove that ¢ (X ,t ) defined by (10) satisfies Eq. (1), set

SO =, (1) +A, (X,1), |A, (X,1) —>O‘ (12)
In view of Eq. (4), we get
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< IIAn(x.t)II

p(x, t)——f(x t)—; j [Ft.Dk(9() - 9(yD7(z. y. 4y, ))dydr

0Q

ﬂ, t
+H [[IF@2lkda() - gDl (. y. ¢(y. ) = A, (¥, ) = (z, ¥, 6(y, 7))| dydlz].

Using the conditions (b) and (d-2), and applying Hoélder inequality to
Hammerstein integral term, then with the aid of condition (a), we obtain

px.D) —i f(x.0) —%j [Ft k(90— gDz, y. 4y, )dyde

(12)

A, L (X 1)

So that, by taking nlarge enough, the right-hand side of (12) can be as small as
desired. Thus, the functiond (x ,t ) satisfies

up(x 1) = (0 +A[ [F .2k (g ) =g (Y ))r(z.y . 4y, 0))dyd 7

and is therefore a solution of Eq. (1) .
To show that (I) (X ,t) is the only solution of Eq. (1), we assume the existence
of another solution ¢ (X ,t ), then

H¢(x,t)—¢3(x,t>u
| j j|F(t k(g () =gy (. y. 4y, 7)) = 7(z.y. (y. 7))| dydz],

Using the conditions (b) and (d-2) and applying Holder inequality to
Hammerstein integral term, then in view
of the condition (a), the above inequality can be adapted in the form

[60x.£)=g(x )] < o |px t) - f(x 1) (13)

Since 6 <1, then the inequality (13) is true only if ¢ (X ,t )=¢ (X ,t) ; that s, the
solution of Eq. (1) is unique.

2.2 The existence of a unique solution using Banach fixed point
theorem:

Theorem 1. The integral equation (1) has a unique solution in the Banach space
L,(€) xC[0,T], under the condition
|A|Mc"QT <|4]. (14)

To prove this theorem, we must consider the following lemmas
Lemma 1. Under the condition (a) — (d-2), the operator W maps the space

L,(©) xC[0, T]into itself.
Proof : In the light of the formula (3), we have
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||VV¢(X't)||

||f(x t)||+ j I|F(t k(g9 =gl (= y. 4y, )| dydz].

Using the conditions (b) and (), then applying Holder inequality, we get

||VV¢(X,I>||

M k(g () - g (D]’ dy}p max j{j Iz, y. ¢y, 2| dy}dz]|,

||W¢(x,t)||

j{fly(r, v, 6y, )" dy} del].

0 Q

J{I{j 909 - gDl 89

0o Q

max
In view of the conditions (a) and (d-1), the above inequality takes the form
W p(x, t)H_| |+a||¢(x D), (o= Mc QT). (15)

Inequality (15) shows that, the operator Wmaps the ball Sp
into itself, where

G
[ |—|A/McQT ]
Since p>0 ,G >0 , therefore we have o <l. Moreover, the inequality (15)

involves the boundedness of the
operator W of Eq. (3), where

W g(x,y)| < ofex.y)] (17)
Also, the inequalities (15) and (17) define the boundedness of the operator W .
Lemma 2. Assume that, the conditions (a), (b) and (d-2) are verified, then W is a
contractive in the space L () xC[0,T].

p= (16)

Proof : For the two functions @(X,t) and ¢,(X,t) in the space
L, (€)xC[0,T ], and from Egs. (1), (3), we find

”V\_/¢1(X’ t) _V\_/¢2 (Xv t)”

g% [[IF@DIk(9C) =9Iz, y. .y, ) = (7, v.4,(y, )| dyde].

with the aid of conditions (b) and (d-2), the above inequality becomes

"VV¢1(X1 t) _Vv¢2 (X’t ”

The above inequality can be written in the form

j{]k(|g(x) O oy maxj{]y(rm (. 0) =7z Y, ,(y.7) |dy}er
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IIVV¢1<x,t)—vV¢2<x,t>||

Applying Holder 1nequality to Hammerstein integral term, then using the
condition (a) , we finally get

W a0 -Wex D] <aldx.)-g,x.0) (18)
From inequality (18), we see that, the operator W is continuous in the space
L,(Q)xC[0,T], then W is

Hlk (900 -9 DIING Yy, 7) -, (v, 7)|dyde].

a contractive, under the condition o <1.
The previous two lemmas (1) and (2) proved that, the operator W of Eq. (2) is
contractive in the Banach spacel (©)xC[0,T]. So, from Banach fixed point

theorem, W has a unique fixed point which is the unique
solution of Eq. (1).

2.3 The existence of at least one solution:

If the condition (d-2) of theorem (1) is not verified, then the existence of at least
one solution of Eq. (1) can be

established by virtue of the following theorem.

Theorem 2. Consider Eq. (1) with the same conditions for the functions £ (g (x)

-g®)), F(t,7) andf(x .,t) as
in theorem (1). Let Sabe the set of function ¢ in L (Q)xC[0,T]for which

||¢|| < a,ais a constant, and

assume that the function y(t,X,@(x ,t)) satisfies the condition
1

(i) max|[{[|r(z.x.6(x 2| d3* dz

0<t<T
0 Q

<E, (Eisaconstant) VgeS, .

<é&
0<t<T

(i) max|[{]]7(z, x.4,(¢. ) = (z. x4, (. )| X}

if
IA(x.7)—4,(x,7)| <S(e); e<<lVd.4 €S,

Then Eq. (1) has at least one solution in So..
The proof of this theorem can be obtained directly from the following lemmas.

Lemma 3. The set Sa is a convex closed set in the space L (©)xC[0,T].
Proof : To show that Sy is a convex set in the Banach space L (Q)xC[0,T], we
choose any functions ¢ (X,t),4,(x,t)in S , then
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lsd +@—s)a| <s |||+ @-5s)|¢|<sp+@-s)p=p, 0<s<1
The set S  is closed, since the space L,(Q)xC[0,T]is complete, and if {4, }is a

sequence in Sp
having a limit ¢, then

[l <ll¢ =gl +len| <[¢—d.|+p. VeS,

As n —0, it follows that ||¢|| <p,and ge§ .

Lemma 4. Under the conditions (a-c) and theorem (1) and (2) respectively, the
operator W of Eq. (2) maps the set Sp into itself.

Proof: In the light of Eq. (2) and (3), we get
||W¢(x,t)||

||f(x t)||+ j j|F(t ) k(g() - gDlI7(z, v, 4y, )| dydr].

Applylng Holder inequallty to Hammerstein integral term, then using the

conditions (a-c) and (i) of theorems (1)
and (2), respectively, the above inequality can be adapted in the form

Al «
Wa(x,t)] < —+0' (o, =|=|c"MET). (19)
Y7,
Inequality (19) shows that, the operator W maps the set Sp into itself, where
G
p=ﬂ+01; (,LliO) (20)
y7,

Lemma 5. In the conditions (a-b) and theorem (1) and (2), respectively, are
verified, then the operator W is continuous

inS,
Proof : For the two functions ¢ (X,t)and@,(x,t) in S , and from (2), (3), we
get

IIVV¢1<x,t)—vV¢z<x,t)||

(v, 0)) = (v, ¢, (y,7))|dydz

Applylng Holder inequality to the Hammerstein integral term, the above
inequality becomes

W, (x,£) -We, (x, 1)

| |Mchax

| | o<t<T

j {1 y. 8.0, - 70, y. 4, (y. ) dy}* dr
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If ||¢1(X,t) -4, (X,t)” <d(¢), then in the light of condition (ii) of theorem (2), the
above inequality reduces to
— — Al Al
||VV¢1(x,t)—W¢2(x,t)||SUMCT5<£; uMcT <1 (21)
| |
which implies the continuity of W in the set Sp

Lemma 6. Let {k, (|g(X) - g(y)|)} and {F (t,7)} be two sequences of continuous

functions satisfy the conditions

img[{[lk,0900 - gD k(g0 -gWP" dF b} =0 (22)
!iqm%|Fn(t-7)_F(t-7)|:0 (23)

Then, there exists a positive integer N, such that

44

q 1
k,(g(x)-g(y)P[ dx} dy}* <c”, vn>n, (24)

and

max|F, t.7)|<M, Vn>n, (25)
o<t<T

proof: In the light of formulas (22) and (23), and with the aid of theorem (1),
there exists two positive integers

n,,N,, such that
{4
<{J{

<g+c,vVn>n.

a(x) - g ()|’ &3 dy}*

K, (

k(900 - 9N k(a0 - gDI" a3 ayy +{[{[ kg (x) - g (DI’ dx}* dy*

Also,
< —
5122(|Fn (t,7) < Egz?qun (t,7) F(t,r)|+ggz§<>r<|F(t,r)|<gl+M ,vn >n,.
Since € and & are arbitrary, then for N, = max{n,,n,}, we conclude
g
Q Q

k,(a(x)-g(y)|" dx}*dy} <c”,vn>n,,

and max|F, (t,7)| <M ,vn>n,.
o<t<T

Lemma 7. Assume that the conditions of theorem (2) and lemma (6) are verified,
then the sequence of operator {V\_/n} defined by
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W¢uo——fuo+yHFarwqmw g7z, v, 4(y, 7))dydr (26)

maps the set Sp continuously into itself for each n > n,.

Proof : From the formula (22), we get

W, g(x.0)

|| f(x,1)| +

2'))| dydr

Applylng Holder 1nequa11ty to Hammerstein integral term, then using the
conditions (c) and theorem (1) and(2), respectively, finally in the light of the
conditions (20) and (21), the above inequality takes the form

”N ¢(X t)” —| |+O-l (27)

_ G
Thus W maps the set S into itself, where « = —+0o,, (1 #0)

17—

Also, from Eq. (26), we have

W, (x, t) =W, 4, (x, )

—||H

Applying Hoélder inequality to Hammerstein integral term, and using the
conditions (24), (25) and (ii) of theorem (2), the above inequality can be
reduced to

(v, 7))~ 7(z,,4,(y,7))|dydz

W, (x ,t)-W ¢,(x, t)H< c ‘MT e<e,vn >n; (28)

Lemma 8. Under the same conditions of lemma (2), the set VV(SD) is compact.
Proof : From Egs. (2), (3) and (26), we get
||Wn¢1 (X’ t) _Wn¢2 (X’ t)”

|,u| 00
t

7)|dydz

Z'))| dydr

F

In view of conditions (23) and (25), the previous inequality for N >n (&)

becomes
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W, . (x,t) =W, 4, (x, )

|

+&

| ﬂk (900 -9 -k(g()-gWD|lr (. y, ¢y, 7)|dyd=

f Jk(ae)- gDl (z.y.4(y, T))|dydrﬁ

Applying Hoélder inequality to Hammerstein integral term, then using
conditions (a), (i) of theorem (1) and (2),
respectively, and Eq.(22), the above inequality becomes

W (x 1) -W ¢, (x t)H<| ||MET5+|| ||c ETe<sg, vn>ns) (29
MU

Inequality (29) shows that Wn¢(X 1) W g(x,t) forall ¢ (x,¢) in S .
Let {#, (X ,t)}be any sequence in S . We can obtain the sequence {4, (x,1)}
which is a subsequence of every ¢nj except for a finite number of elements and
clearly {N_ i ¢5nn } converges for every j. Therefore, we have

Wog,, W, | < g, W |+ 4,

Since m,,Nn, —>oothen for large j , we get from (29),

that
W, W4, |<25,  vm,,n, >ny(e).
Hence, the sequence {W¢ -W¢g, }is Cauchy sequence, so that W(S)is a

compact.
According to the lemmas (3) - (8), we see that W is a continuous operator

maps a closed convex set S in the Banach space L (€)xC[0,T]into itself and

VV(SP) is a compact set. Hence, ¥ has at least one fixed point in Sp.

3. SYSTEM OF NONLINEAR INTEGRAL EQUATIONS
WITH A GENERALIZED SINGULAR KERNEL IN
POSITION

In this section, a numerical method is used, in the mixed integral Eq. (1) to obtain
a system of nonlinear integral equations with a generalized singular kernel in
position. For this aim we divide the interval

[0,7],0 <t <t <T< 0 as

0=t, <t, <..<t, <..<ty =T ,wheret =t,, k=012,...,N

Hence, the integral term of Eq. (1) becomes
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[ [Fe k(a0 - g7z, y. 40y, )eyde

=ZUJF(tk,t,-)jk(lg(x)—g(y)l)y(t,-.y,¢(y,tj))dy+o(hkp“), (30)
(h, >0,p>0)

where

1 :
h= gpj@k(hj,h =t t.,uk:u0=§hk,ujzhj(J;tO,k)

The values of U; and p; p~ k are depending on the number of derivatives of

F(t,t ) with respect to time.

Then, we have
ud (x) =T (X)Jr/IZUIJ Jkfk(lg(x) g(y)D7; (.4 (y)dy 3D
Here, we used the followmg notatlons
px ) =4 (x), f(x.t)=Ff () F.t;)=F.
7, X, 06 1)) =7 (X, (X)), X =X(Xg, X501 X5),
Y=Y(Y1, Y211 V)

The formula (31) represents a system of nonlinear integral equations in

(32)

n-dimensionals, and its solution depends on the given function f )(x), the

kind of the kernel k(g (x)—g (y)),and the degree of the known function
}/(j)(X, ¢(j)(X)).

EqQ.(31) can be written in the form
A
@(x)—;ukakjk<|g(x)—g<y)|m(y,¢k(y»dy=Hk(x> (33)
where ’

H (X)——f x)+— ZU, ,kfk(lg(x) g(y)D7; (y. 4 (y)dy

4, THE TOEPLITZ MATRIX METHOD

Here, we will discuss the solution of Eq. (1) numerically using Toeplitz matrix
method, and Q=[-5,b] . For this, write Eq. (1) in the form

400 =F,00+230 F, [k (g () -9 (D7, (v ¢y ¥y 34
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where
Jkat)-g (7, 0y Dy (=)

Hence, the integral term in the right hand side of Eq.(1) can be written in the

form
a+h

[ k(a(x0-g(7; (v, 4, (y))dy

= A" (9(x)7;(a.¢;,(@) + B (9(x)y;(@a+h,g;(a+h) +R, (a=nh),

where An“)(g(x)) and Bn“)(g(x)) for all values of j,0 <j<i are arbitrary functions

(33)

to be determined, and R is the estimate error, R =maxR". To determine
]

A" (g(x))and B{”(g(x)) in the light of Toeplitz matrix method, we put ¢ (v ) =g

')yand ¢ (v )=g'(y )g (), respectively in Eq. (35), where g '(x ) is a monotonic
increasing function. These yields a set of two equations in terms of two unknown
functions where, in this case, the error is vanishing. Solving the results, we have

Af”(g(x))—w)[?,(am g'(a+h)g(@a+h)l -y, (a+h.g'(a+h)Jl. (36

B (g(x ))—W[% (a,9'(@)J —y,(a,g'@)1], (37)
where
) a+h )
19 = [ k(g()-a()r,(y.9'(y)dy, I3V
L (38)
= [ k(g(9—-g(yhr; (v, 9'(Va(y)dy,
and _ ’
h” =y,(a,9'(@)y;(@+h,g'(@a+h)g(a+h)) )

—y;(@a+h,g'(a+h)y;(a g'(@g(@), 0<j<i
In view of Egs. (34) - (39), the formula (31) becomes

[k(g ) =gy, (v, 4y Ny = i D (x)7;(nh,g;(nh)),  (40)

where
AN () n=-N
DO(x)={ AP (x)+BX(x) ,-N<n<N (41)
B,(\]j_)l(x) ,n=N,

Thus, the integral equation (1) takes the form
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H (X)—/’tzi: i F;D," (x)y; (nh, ¢, (nh)) =1, (x). (42)

j=0n=-N
Putting x = mh in (42), and using the following notations

¢,(th)=¢,, D’ (mh) =Dy, f,(mh) =,

mn?

(43)
y(z;,nh,¢;(nh)) = 7. (¢;,)
we get the following nonlinear algebraic system
i N _
U, _AZ Z FijDé]Jn)(¢jn):fim’ -N <m <N (44)
j=0n=-N
Dr(njn) = Aﬁ”(mh)+ Bn‘ii(mh) ,—N <n<N (45)
By, (mh) n=N, j=12,.,i,
The matrices D!” can be written in the Toeplitz matrices forms
Do =G —E ) (46)
Here, the matrices Gr(ni]) is called Toeplitz matrices of order (2N +1) and
GU =AD(mh)+B"(mh), —N <m,n<N, (47)
and
B | (mh) ,n=—N
ED =10 —N <n<N (48)
AP (mh) =N, j=12..,

represent a matrices of order (2N +1) whose elements are zeros except the first
and the last rows (columns).
The error term R is determined from the following formula
nh+h

R =| [ 7,(y.9'9")k(g () - g(y)dy - A (g (x));(nh, (nh)*)

~BW(g(x))(nh+h,(nh+h)?).

=o(’); R =maxR"
J

4.1 Nonlinear algebraic system of the Toeplitz matrix:

In section, will be devoted to prove the existence of a unique solution and the
existence of at least one solution of the nonlinear algebraic system (44) in the

Banach space /”. For this, we write it in the operator form
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T =Tg +11=m , (50)
U
where

Z Z F,DUyn(#,); (u#=0,-N <m<N).  (51)

j =0n=
Then, we consider the followmg.

Lemma 9. If the kernel of Eq. (1) satisfies the following conditions

k(g(x)-g(y)el,; a>1, (52)
lim [k (g (x)-g (y))—k (g () -g (y))] =0, 3)

i
Then for SUpZ‘Fij ‘ <0Q,, 9, #0 we have
i j=0

(i) supsupz Z [|[=X

j—n

exists

(ii) lim supsupz Z IF;|[D 8 - =0 (54)

j=0n=-—

proof : F rom the formula (54), we have

‘A:j)(x)‘

M[|y,(a+h g'(a+hyg(a+h)| | ZI k(900 - g D], (y. ')

dy+|7,@@+h.g'@+h)| | _'ZIE,-||k(|g<x)—g(y)|)||7j(y,g'(y)g(y»ldy]

Applying Hoélder inequality for
p>1,0>1;

to each integral term of the above inequality, we get

AP ()< ‘z\ Ryl I\k|g g )My, (@+h.g'@+hg(a-+h))

a+h 1

1
([ 09| dy)? +[r(a+h.g'(a+ )| Hy,yg (D) dy)°]

Hence,
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i atha+h 1
AV ﬁzo\ ([ [ Klot- 0y e+n e+ gta+)
a+h
([l dy)? +\7Ja+hg(a+h\ J\mg \dy

a

Summing from N =—N to N =N, we obtain

A ‘\n ‘Z\ Rl -0l L a3,

Hri@snflr .y “Lp]'

In view of the condition (36), and the continuity of the function y in the domain Q,

there exists a small constant El, such that

>3

j=0n=-N

<E,, VN, E,=supE,
i

i N
Since, each term of Z Z AS”(X) is bounded above, hence for X =mh, we

j=0 n=—N

deduce

supsup Z AD (mh)|<E,. (55)

n=—N

Similarly, from formula (37), we can find a small constant E,, such that
N
supsup " [B(mh)|<E,, E,=supE. (56)
i N p=—N i

In the light of (42), (45), and with the help of (55) and (56), there exists a small
constant E, such that

supsupz Z [S[=X

N j=on=
<supsupz Z ‘Aﬁ”(mh)ﬁsupsupz Z ‘B“’(mh)‘< E; (E=E+E,)
j=0n= j=0 n=

Hence, supsup Z z F

i N j=0 n=—N

By virtue of the formula (36), we get for X ,X" €[-b,b]
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AT ()= AP ()
_|hf|{2| 7@+ ha+h)| [ k(g(x)— g —k(g() - a7, (y.|dy

+lr;@+hD| [ k(g(x) =g k() = a7, (y. y)| dy}-
Applying Holder inequality, then summing from Nn=—N to n =N, and

taking account the continuity of the function y, the above inequality can be
adapted in the form

supstp > A00)- A )
sﬁ“k(lg(X’)—g(Y)l) ), {supZ\ F sup Z r@+ha<hy (9],

i N
rsup 2 [Ffsup . [+l (1),
=0 n=-N P
Putting X =mh, Xx'=m", then using the condition (53), we get
lim supsupz Z ‘A(”(m’h) A“)(mh)‘ (57)

N j=0n=-N

Similarly, in view of the formula (37), we can prove

lim supsupz Z B (mh)—B ¥ (mh)|=0 (58)

m’'—m N
Finally, with the aid of (42), (57) and (58), we have
lim supsupz Z ‘F”HDU)_Drg]Jn)‘:O

N j=0n=—

4.2 The existence and uniqueness solution of the nonlinear algebraic
system of Toeplitz matrix :

The existence of a unique solution of the algebraic system (42), will be proved
according to the Banach fixed point theorem. For this aim, we consider the
following assumption

sup|f o] SH <o, (H is a constant). (59)
supsupz Z ‘F“‘ <E, (E isaconstnat). (60)
0n=-N

For the constants Q>Q,Q>P; the known functions y(nh,#(nh)),

satisfies
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sup|y(nh,é(nh))|<Q,[®].. . (61)

sup|y(nh, g(nh)) — y(nh,w (nh))| < P, |[®—¥|.. , (62)
n
where ||®||,. =sup|g,|, for each integer n.
Theorem 3. The algebraic system (42), in the Banach space , has a unique
solution under the condition Ilw "
14| < |ﬂ | (63)

To prove this theorem, we must consider the following lemmas.

Lemma 10. If the conditions (59) - (61) are verified, then the operator T
defined by Eq. (50) maps the space ¢” into itself.

Proof: Let U be the set of all function < B, is
a constant. Define the norm of the operator T @ in the Banach space (” by
‘ To|, =Sup‘f¢m‘, for each integer m. (64)
m
From the formulas (50) and (51), we get
— 1
Tl'¢m‘< Z Z F; —suplf . |.
j=0n=-N |/,l| m
Using the conditions (59) and (61) we obtain
rr¢ ‘< supsupz Z ‘F,JH (65)
j=0n=-N

In view of the condltlon (60), the above inequality can be adapted in the form
— H A
supfT ¢, |< oy ®],. +7=.  (6,=|~QE). (66)
m H
Since, the above inequality is true for each integer M, we deduce

" A
_ H
Q| . +—.
I 7

The inequality (67) shows that, the operator T maps the set U into itself,
where

(67)

A
(= |2IQE)

Since #>0,H >0 therefore we have o, <1. Also, the inequality (67), with the

(68)

B=

aid of (60) involves the boundedness of the operator T , where

. <oy (69)
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Furthermore, the inequalities (67) and (69) define the boundness of the
operatorT .

Lemma 11. Under the two conditions (60) and (62), T is a continuous and a
contraction operator in the space /.
Proof: For the two functions ® and ¥ in ¢ the formulas (50) and (51) lead to

_ _ 2ld, N _
0 ~Twal<[7 12 3 Fs [Dansuply (oh, o)) —7(nh,y (ah)]
j=0n=-N n
In the light of condition (62), we obtain
_ _ y) i N
’T O =T W ‘ <I-Q ”cD_\P”w SupSUpZ‘Fij ‘ Z |Dmn|'
H i N =0 n=-N

Using the condition (60), we get
F ¢h'_1-¥4n‘5;01”q)__q?

The above inequality is true for each integer m , hence in view of (64) we
have

(70)

"

To-T ¥ <o |0-¥

o (71)
The inequality (71) shows that, the operator T is continuous in the space

¢”,thenT is a contraction operator, under the condition o, <1.

In the light of the lemmas (10) and (11), the operator T defined by (50) is
contractive in the Banach space /*. Hence, T has a unique fixed point which

is, the unique solution of the nonlinear algebraic system in (.
In the next theorem, the convergence of the sequence of approximate solution

to the exact solution of Eq. (50) will be proved in the Banach space ¢

Theorem 4. If the conditions (60) and (62) are satisfied and the sequence of
functions {L }={(f ) }converges uniformly to the function L={f} in the

Banach space /”. Then, the sequence of approximate solution {©3={()}
converges uniformly to the solution d)j ={¢,} of Eq. (50) in the Banach space
.

Proof: By virtue of Eq. (42), we have

60— (@),
> > |R|Ipg

j=0 n=—

<

A
7,

sunp\y(nh,qﬁ(nh»—y(nh,qﬁ,-(nh»\ﬁ\fm ~ (),

The above inequality, after using condition (60), holds for each integer m,
hence from condition (62), we find
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1

sup|g, —(¢n); | <oy [@ -, | . +=sup|L-L;|. (72)
n 7
Finally, the previous inequality takes the form
1
O-P || <—|IL-L.| . ; (o<1 (73)
H e [|,u|—|ﬂ,|QE]H illy ( 1 )

Since ||L— L, ||/ —0as ] — oo, so that ||d)—d)j||/, —0.

4.3 The error of the Toeplitz matrix method:

Definition 1. The estimate local error R, is determined by the following equation

[#(x,1) = 8 (x, 1)

i N ) 74
= Z Z w;F; DDy (z, nh,gzﬁ(nh,r))—;/(rj,nh,¢(nh,rj))‘+ R; o
j=0 n=—N
where ¢, (X) is the approximate solution of Eq. (1).
Also, Eq. (74) gives
R, =|[ [ Ft.o)k(g() - gD (z y, 6y, 7)dyd =
00 (75)

i N .

j=0 n=—N

Definition 2. The Toeplitz matrix method is said to be convergent of order r in the
interval [—p 5], if and only if for sufficiently large y , there exists a constant D >0

independent of /N such that
|lp(x,t) =, (x,t)|<DN . (76)

Now, we will give theorem which prove that, the estimate error R j is very small

and be neglected as j — oo, either the nonlinear algebraic system (44) has a unique
solution or it has at least one solution.

Theorem S. Assume that, the hypothesis of theorem (3) are verified, then
limR; =0. (77)

] >

Proof : Inview of the formula (74), we have
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Ry <[~ ()]
i N )
-2 > F,DY(|y(z,.nh, $(nh, 7)) - ¥ (z;, nh, g(nh, 7))
j=0 n=—N
Using the condition (62), we obtain

R;| <supld, —(¢,);|+Q @ -, qupsgpi i 7, [o®
" ! j=0n=-N

‘Ri ‘ < (1+QE)HCD—(DJ- H/’m , foreach j.

(78)

Since HQD—CDJ-HW —>0as j - oo, then R; —0.

5. NUMERICAL EXAMPLES

In this section, we apply the Toeplitz matrix method, to obtain the numerical
solution of the V-HIESK with a generalized singular kernel using Maplel0
program. This leads to the required approximate solution of the V-FIESK (1)

when the kernel k(|g(x)—g(y)|) takes the forms of Carleman function,

logarithmic form, and Cauchy kernel.

5.1 Application for a Generalized Carleman Kernel
Example 1: Consider the integral equation:
t 1
s ) =F )+ [|x* =y [ g (y,r)dydz, (0<t<T;[x|<1)
0-1
The Toeplitz matrix method is used to get the numerical solution for values of =

1, at the times ¢€[0,0.03], z[0,0.6], with A = 0.2500, and 0.31579 , and we divided
the position interval by N = 21 units,and 0 < v < 1/2 , v is called Poisson ratio.

the exact solution #(X, t) = x’t°.

Casel : A=0.2500, v=0.1:

Table 1

T X E Appr. sol . T. Err. T.
-1.00 -7.29000E-10 -7.29008E-10 8.22500E-15
-0.60 -5.66870E-11 -5.66876E-11 6.38000E-16
003 -0.20 -2.33280E-13 -2.33282E-13 2.62800E-18
) 0.20 2.33280E-13 2.33282E-13 2.62800E-18
0.60 5.66870E-11 5.66876E-11 6.38000E-16
1.00 7.29000E-10 7.29008E-10 8.21100E-15
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-1.00 -4.66560E-02 -4.72000E-02 5.44011E-04
-0.60 -3.62797E-03 -3.59137E-03 3.65956E-05
0.6 -0.20 -1.49299E-05 -1.64042E-05 1.47431E-06
’ 0.20 1.49299E-05 1.35937E-05 1.33619E-06
0.60 3.62797E-03 3.69153E-03 6.35640E-05
1.00 4.66560E-02 4.68023E-02 1.46391E-04
Case2 : A= 0.31579, v=0.12:
Table 2
T X Exact sol. Appr. Err T.
-1.00 -7.29000E-10 -7.29010E-10 1.03670E-14
-0.60 -5.66870E-11 -5.66878E-20 8.09000E-16
0.03 -0.20 -2.33280E-13 -2.33283E-13 3.31900E-18
’ 0.20 2.33280E-13 2.33283E-13 3.31800E-18
0.60 5.66870E-11 5.66878E-20 8.06000E-16
1.00 7.29000E-10 7.29010E-10 1.03738E-14
-1.00 -4.6656E-02 -4.71160E-02 4.60041E-04
-0.60 -3.62797E-03 -3.58717E-03 4.07980E-05
0.6 -0.20 -1.49299E-05 -1.68242E-05 1.89435E-06
’ 0.20 1.49299E-05 1.32102E-05 1.71967E-06
0.60 3.62797E-03 3.70352E-03 7.55503E-05
1.00 4.66560E-02 4.68863E-02 2.30330E-04

Example 2: Consider the integral equation:

p(x,t)=f (x ,t)+iH|sin(x)—sin(y)

Uy, r)dyd T,

The values of =1, at the times 7€[0, 0.006], [0, 0.03], with A=0.111111,
0.13636, and we divided the position interval by N =21 units. Exact solution

d(x,t) =tsin(x).

Casel : A=0.111111, v=0.05:

Table 3

T X E Appr. Err. T.
-1.00 -5.04882E-03 -4.80932E-03 2.39505E-03
-0.60 -3.38785E-03 -3.45951E-03 7.16582E-05
0.006 -0.20 -1.19201E-03 -1.24102E-03 4.90082E-05
’ 0.20 1.19201E-03 1.22417E-03 3.21594E-05
0.60 3.38785E-03 3.41465E-03 2.67965E-05
1.00 5.04882E-03 5.01148E-03 3.73373E-05
-1.00 -2.52441E-02 -2.40467E-02 1.19741E-03
-0.60 -1.69392E-02 -1.72976E-02 3.58379E-04
0.03 -0.20 -5.96007E-03 -6.20515E-03 2.45074E-04
’ 0.20 5.96007E-03 6.12090E-03 1.60827E-04
0.60 1.69392E-02 1.70733E-02 1.34068E-04
1.00 2.52441E-02 2.50575E-02 1.86563E-04
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Case2 : A=0.13636 ., 1=0.06:

Table 4

T X E Appr. Err. T.
-1.00 -5.04882E-03 -4.69240E-03 3.56422E-04
-0.60 -3.38785E-03 -3.49470E-03 1.06848E-04
0.006 -0.20 -1.19201E-03 -1.26575E-03 7.37403E-05
' 0.20 1.19201E-03 1.24006E-03 4.80503E-05
0.60 3.38785E-03 3.42787E-03 4.00218E-05
1.00 5.04882E-03 4.99306E-03 5.57592E-05
-1.00 -2.52441E-02 -2.34621E-02 1.78198E-03
-0.60 -1.69392E-02 -1.74736E-02 5.34355E-04
0.03 -0.20 -5.96007E-03 -6.32882E-03 3.68743E-04
' 0.20 5.96007E-03 6.20037E-03 2.40290E-04
0.60 1.69392E-02 1.71394E-02 2.00214E-04
1.00 2.52441E-02 2.49654E-02 2.78645E-04

5.2 Application for a Generalized logarithmic kernel .

Example 1: Consider the integral equation:

d(x t)=f (x,t)+/1ﬁ|n\x4—y4\r2¢2(y,r)dydr,

The Toeplitz matrix method are used to get approximate solution for values
of u=1,1=0.25,0.6666666667, t[0,0.006], [0, 0.03] and N = 21. Exact

solution @(X,t)=x"°.

Casel : A=0.25:
Table 5

T X E Appr. Err. T.

-1.00 -4.66560E-14 -4.66560E-14 2.09000E-20

-0.60 -3.62797E-15 -3.62797E-15 1.62000E-21

0.006 -0.20 -1.49299E-17 -1.49299E-17 6.72000E-24

: 0.20 1.49299E-17 1.49299E-17 3.09000E-24
0.60 3.62797E-15 3.62797E-15 1.62000E-21

1.00 4.66560E-14 4.66560E-14 2.09000E-20

-1.00 -7.29000E-10 -7.29008E-10 8.21700E-15

-0.60 -5.66870E-11 -5.66876E-11 6.38300E-16

0.03 -0.20 -2.33280E-13 -2.33286E-13 2.62760E-18

: 0.20 2.33280E-13 2.33282E-13 2.62760E-18
0.60 5.66870E-11 5.66876E-11 6.39500E-16
1.00 7.29000E-10 7.29008E-10 8.21900E-15

Case2 : A= 0.6666666667:
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Table 6
T X E Appr. Err. T.
-1.00 -4.66560E-14 -4.66560E-14 5.61000E-20
-0.60 -3.62797E-15 -3.62797E-15 4.24000E-21
0.006 -0.20 -1.49299E-17 -1.49299E-17 1.79600E-23
' 0.20 1.49299E-17 1.49299E-17 1.78600E-23
0.60 3.62797E-15 3.62797E-15 4.24000E-21
1.00 4.66560E-14 4.66560E-14 5.60000E-20
-1.00 -7.29000E-10 -7.29021E-10 2.19340E-14
-0.60 -5.66870E-11 -5.66887E-11 1.70500E-15
0.03 -0.20 -2.33280E-13 -2.33287E-13 7.00820E-18
' 0.20 2.33280E-13 2.33287E-13 7.00560E-18
0.60 5.66870E-11 5.66887E-11 1.70200E-15
1.00 7.29000E-10 7.29021E-10 2.19280E-14
Example 2: Consider the integral equation:
t 1
2 2
pOct)=f (1) +2[ [Infe* —e**| 7% (y ,7)dyd
0-1

The values of =1, A=0.001, 0.01, 0, 7€[0,0.006], z[0,0.03], and N = 21. Exact

solution @(x,t) =e*t%,

Casel : A=0.001:

Table 7
T X E Appr. Err. T.
-1.00 7.94619E-08 2.07018E-07 1.27556E-07
-0.60 1.99840E-07 1.80487E-07 1.93531E-08
0.006 -0.20 2.15930E-07 2.13927E-07 2.00367E-09
’ 0.20 2.16069E-07 2.16981E-07 9.12392E-10
0.60 2.33466E-07 2.38628E-07 5.12621E-09
1.00 5.87188E-07 5.27568E-07 5.95801E-08
-1.00 9.93274E-06 2.58773E-05 1.59446E-05
-0.60 2.49800E-05 2.25608E-05 2.41914E-06
0.03 -0.20 2.69913E-05 2.67409E-05 2.50457E-07
’ 0.20 2.70086E-05 2.71226E-05 1.14050E-07
0.60 2.91833E-05 2.98285E-05 6.45273E-07
1.00 7.33936E-05 6.59460E-05 7.44751E-06
Case3: 1=0.01:
Table 8
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T X E Appr. sol . T. Err. T.
-1.00 7.94619E-08 1.70521E-06 1.62575E-06
-0.60 1.99840E-07 6.13068E-08 1.38533E-07
0.006 -0.20 2.15930E-07 1.98154E-07 1.77761E-08
’ 0.20 2.16069E-07 2.24125E-07 8.05667E-09
0.60 2.33466E-07 2.68401E-07 3.49346E-08
1.00 5.87148E-07 1.93059E-07 3.940895E-07
-1.00 9.93274E-06 2.13151E-04 2.03212E-04
-0.60 2.49800E-05 7.66335E-06 1.73166E-05
0.03 -0.20 2.69913E-05 2.47693E-05 2.22200E-06
’ 0.20 2.70086E-05 2.80157E-05 1.00709E-06
0.60 2.91833E-05 3.35501E-05 4.36684E-06
1.00 7.33936E-05 2.41324E-05 4.92611E-05
5.3 Application for a Generalized Cauchy kernel
Example 1: Consider the integral equation:
t 1 1
2 3
s ) =f () +A[ [———2"(4(y 7)) ’dyd 7,
0-1 (X -y )

The values of =1, 1=0.6666666667, 1.5, 1[0,0.006], 7€[0,0.03], and N =21.

Exact solution (X ,t) =X °t°.
Casel: 4=0.6666666667:

Table 9
T X E Appr. sol . T. Err. T.
-1.00 -4.66560E-14 -4.66560E-14 5.60000E-20
-0.60 -3.62797E-15 -3.62798E-15 1.04400E-20
0.006 -0.20 -1.49299E-17 -1.49299E-17 2.00000E-23
’ 0.20 1.49299E-17 1.49300E-17 8.00000E-23
0.60 3.62797E-15 3.62797E-15 6.44000E-21
1.00 4.66560E-14 4.66560E-14 5.59000E-20
-1.00 -7.29000E-10 -7.29022E-10 2.20190E-14
-0.60 -5.66870E-20 -5.66910E-20 4.05000E-15
0.03 -0.20 -2.33280E-13 -2.33138E-13 1.42000E-16
’ 0.20 2.33280E-13 2.33138E-13 1.42000E-16
0.60 5.66870E-11 5.66911E-11 4.14000E-15
1.00 7.29000E-10 7.29022E-10 2.20220E-14
Case2 : A=1.5:
Table 10
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T X E Appr. sol . T. Err. T.
-1.00 -4.66560E-14 -4.66561E-14 1.26000E-19
-0.60 -3.62797E-15 -3.62798E-15 9.44000E-21
0.006 -0.20 -1.49299E-17 -1.49300E-17 8.00000E-23
’ 0.20 1.49299E-17 1.49300E-17 8.00000E-23
0.60 3.62797E-15 3.62798E-15 9.44000E-21
1.00 4.66560E-14 4.66561E-14 1.26000E-19
-1.00 -7.29000E-10 -7.29049E-10 4.92690E-14
-0.60 -5.66870E-20 -5.66908E-11 3.85000E-15
0.03 -0.20 -2.33280E-13 -2.33290E-13 1.00000E-17
’ 0.20 2.33280E-13 2.33290E-13 1.00000E-17
0.60 5.66870E-11 5.66910E-11 4.00000E-15
1.00 7.29000E-10 7.29049E-10 4.92680E-14

Example 2: Solve the integral equation-
p(x.t) =1 (x, twjj oy G ) dyd

The values of u= 1, at the times ¢€[0, 0.006], t[0 , 0.03], with A = 0.001,
0.004, and we divided the position interval and N = 21 units.

Exact solution ¢(x,t) =e*t>,
Casel_: A=0.001:

Table 11
T X E Appr. sol . T. Err. T.
-1.00 7.94619E-08 7.34891E-08 5.97279E-09
-0.60 1.18543E-07 1.17907E-07 6.35629E-10
0.006 -0.20 1.76845E-07 1.73659E-07 3.15984E-09
0.20 2.63822E-07 2.44673E-07 1.91499E-08
0.60 3.93577E-07 8.04501E-07 4.10923E-07
1.00 5.87148E-07 2.70418E-06 2.11704E-06
-1.00 9.93274E-06 9.18614E-06 7.46599E-07
-0.60 1.48179E-05 1.47384E-05 7.94530E-08
0.03 -0.20 2.21057E-05 2.17107E-05 3.94979E-07
’ 0.20 3.29778E-05 3.05841E-05 2.39374E-06
0.60 4.91972E-05 1.00562E-04 5.13654E-05
1.00 7.33946E-05 3.38023E-04 2.64630E-04
Case2 :_ 4= 0.004:
Table 12
T X E Appr. sol . T. Err. T.
-1.00 7.94619E-08 5.79042E-08 2.15577E-08
-0.60 1.18543E-07 1.16126E-07 2.41660E-09
0.006 -0.20 1.76845E-07 1.89642E-07 1.27964E-08
’ 0.20 2.63822E-07 2.73288E-06 2.46906E-06
0.60 3.93577E-07 9.82056E-06 9.42698E-06
1.00 5.87148E-07 5.05854E-06 4.47140E-06
-1.00 9.93274E-06 7.23803E-06 2.69471E-06
-0.60 1.48179E-05 1.45158E-05 3.02072E-07
0.03 -0.20 2.21057E-05 2.37052E-05 1.59956E-06
’ 0.20 3.29778E-05 3.41611E-04 3.08633E-04
0.60 4.91972E-05 1.22757E-03 1.17837E-03
1.00 7.33946E-05 6.32318E-04 5.58925E-04
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6. CONCLUSION

(1) When the values of 4 and v are increasing and the values of the time 7 kept
fixed, the error is increasing, where the atomic bond between the particles of the
material is increasing.

(2) When the values of time 7 are increasing and the values of 4, v and N kept
fixed, the error is increasing.

(3) The Toeplitz matrix method is the efficient numerical method, for solving
the V-HIESK with singular kernels, compared to the other methods.
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