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Abstract: This research work “Modelling  Academic risks of students in 
a Polytechnic System With the Use of Discriminant Analysis”:  A Case 
Study of Federal Polytechnic Ilaro, Ogun State, identified students at 
academic risks i.e. those who are in danger of failing, repeating on 
probation or being withdrawn due to the level of their academic 
performance.  Several methods exist for student’s identification for 
academic risks; these include the Bayesian approach, Von Mises 
(Minimax), Multiple Regression Analysis, etc.  For this research work, 
the method adopted was the discriminant analysis which assist in 
classifying students into classes of grades i.e. Distinction, upper credit, 
Lower Credit, Pass and others who are in the risk group, the method 
was adopted due to its simplicity and its systemic classification of the 
phenomenon under study. 
Key words: Discriminant; Classification; Risk; Regression; Measurement; 
Discriminant function 
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1. INTRODUCTION 

 

Discriminant Analysis is a statistical technique which allows the researcher to 
study the difference between two or more groups of objects with respect to 
several variables simultaneously.  In designing an institutional intervention of 
any kind, one needs to accomplish as least three tasks: 

I. Determination of the factors that are relevant to the successive 
performance of the task at hand. 

II. Evaluate the impact of any new programme on student’s performance. 
III. Implementation of the new programe and comparing it with the old 

programe. 

In social sciences, there are wide variety of situations in which this technique 
can be useful, for example, a researcher team that has been commissioned to 
study the outcomes of terrorist take-over involving hostages.  In particular: 

(a) They want to know what elements of the situation would predict the safe 
release of hostages even though the terrorist demands have not been 
met. 

(b) How these variables might be combined into a mathematical equation to 
predict the most likely outcome and accuracy of the derived equation. 

The first task mentioned above in the first paragraph means a careful 
delineation of the problem.  Given the large number of possible variables, it is not 
surprising that individuals have different ideas based on different assumptions 
about what causes subpar performance or performance enhancement laying 
these different ideas “out on the table” may provide the group as a whole an 
opportunity to attack the problem in the best way possible.  This will show how 
discriminant analysis can be used to help determine what variables have a 
relationship with performance, and how such relationship can be used to help 
shape intervention.  The second major task is identifying the appropriate 
individuals with which to use the intervention may typically mean identifying 
students who might be termed “at risk”.  These are students who are in danger of 
failing a class, not understanding a certain concept etc.  However, some 
intervention might be targeted at different levels of performance e.g. “the gifted 
student” might be chosen for some supplemented instruction.  It is in this 
student identification task that discriminant analysis will be seen to be most 
advantageous traditional approaches. 

Finally, it is always critical to evaluate the intervention.  This step has many 
purposes.  The most obvious is that it lets the research team and finding agent 
know whether or not a given intervention worked.  In addition, evaluation can be 
used to shape the research program and guide it towards a more effective 
intervention.  We will attempt to show how one can use discriminant analysis to 
assist in this difficult task. 

The main purpose of discriminant analysis is to identify the appropriate 
individuals with which to use the intervention, may typically mean identifying 
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students who might be academic risks i.e. students who are in danger of failing a 
class,  not understanding a certain concept etc.  Therefore the study identifies 
students at academic risk (AR) and not at academic risk (NAR).  The first group 
are the students who are in danger of graduating with poor class of degrees; PCD 
(i.e. Pass and Fail) and the second group are those that will graduate with better 
class of degrees B,C,D; (i.e. Distinction, Upper Credit and Lower Credit) within 
the two years of study; whether at Ordinary National Diploma (OND) or at the 
Higher National Diploma (HND).  In this study, discriminant function analysis 
would be used to predict their grades on successive completion of their courses 
based on their grade point average (GPA) and undergraduate grade points. 

 

2. LITERATURE REVIEW 

 

Researchers have used discriminant analysis in a wide variety of settings: It was 
first developed by Fisher (1930), who was seeking to solve problems in physical 
anthropology and Biology.  In the social sciences, some of the first application 
dealt with psychological and educational testing.  Political scientists have found 
discriminant analysis to be useful in studying citizen and court cases and it has 
also being used in educational interventions.  The technique is especially useful, 
however, in analysis experimental data when assignment to a “treatment” group 
is presumed to affect scores on several criterion variables.   

Ronald Fisher developed discriminant analysis for use with categorical data.  
It is based on assumptions very similar in nature to multiple regressions, except 
that it is designed for categorical criterion.  While not specifically intended for 
use with categorical predictors.  Discriminant analysis forms linear combination 
of the predictors which are used to classify cases into the various “group” of the 
criterion one may conceptualize discriminant analysis in terms of evaluating the 
centroid of a group of cases.  In the present context the student cases are placed 
in grade.  The mean value of a discriminating variable (e.g. SAT or a preceding 
course grade), or predictors, for the students in a particular group is evaluated.  
The bigger the difference between the mean values of the predictors related to 
various groups, the more discriminating is that variable.  Discriminant analysis 
simultaneously analyses all of these mean differences and determines which 
predictors are most discriminating (based on backward probabilities). 

Also, Huberty and Barton (1989) aptly stated that the purpose of the two 
analysis are different, the two types of discriminant analysis that is; predictive 
discriminant analysis performs quite well with categorical data.   

In this study, discriminant analysis is used to identify student at risk in the 
department of Mathematics/Statistics of the Federal Polytechnic, Ilaro.  This 
paper presents a discussion of the collinearity problem in regression and 
discriminant analysis.  It described the reason for the prediction ability and 
classification ability of the classical methods.  The discussion is based on the 
formular for prediction error; special emphasis is put on differences and 
similarities between regression and classification.  
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Multivariate regression and discriminant analysis are among the most used 
and useful technique in modern applied statistics.  These methods are used in a 
number of different areas and application ranging from chemical spectroscopy to 
machine and social sciences.  One of the main problems when applying some of 
the classical techniques is the collinearity among the variables used in the model. 
Such collinearity problem can be sometimes lead to a serious problem when the 
methods are applied, Weisberg (1985).  A number of different methods can be 
used for diagnosing multi-collinearity.  This range from simple method based on 
principal component to more specialized techniques for regularization.  The 
most frequently used method for collinearity and regression classifications 
resemble each other strongly and are based on similar principles.  Often the 
collineaity problem is described in terms of instability of the small eigen values 
and the effect that this may have in the empirical inverse.  Covariance matrix 
which is involved both in regression and classification.  This information is 
relevant for the regression coefficient and relevant classification criteria. 

Linear discriminant analysis is perhaps the most widely used method for 
classification because of its simplicity and optimal properties.  In the classical 
discriminant problem as proposed by Fisher (1936), Anderson and Bahadur 
(1962) studied procedures for classifying two multivariate normal distributions 
with unequal covariance matrices.  They showed how to construct a discriminant 
function that minimizes probability of misclassification given the other and how 
to obtain a minimax discriminant procedure is non-linear.  The best linear 
discriminant for this unequal covariance matrix content was found by 
Clunies-Ross and Riffenberg (1960) and later in (1962) by Anderson , Bohadur 
and Chenoff (1972, 1973) suggested same measures that indicate how well one 
can discriminate between two multivariate normal populations with unequal 
covariance matrices using linear discriminant functions.  He then proceeded 
using such criteria to compare the performance of linear discriminant functions 
based on balanced and unbalanced designs. 

Linear discriminant analysis is known to be optimal for two multivariate 
normal groups with equal covariance matrices. An important result on 
non-parametric estimation of linear classification was suggested by Greer (1979, 
1984); he considered the algorithm designed to produce a hyper-plane that 
minimizes classification rules in a completely non-parametric manner for a large 
set of loss function.  The Fisher’s linear discriminant analysis problem, it 
minimizes the expected loss in the case of known prior probability and it is an 
admissible rule when prior probabilities are not known.  Although Fisher’s linear 
discriminant function has been used in so many practical situations, its statistical 
properties under non optimal conditions have not received much attention until 
recently.  

 

3. METHODOLOGY 

 

The data for this study was obtained from students’ record of Department of 
Mathematics and Statistics, Federal Polytechnic, Ilaro.   There were 61 students 
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in all.   The method adopted in the analysis is the discriminant function.  It is a 
method of finding linear combination of variables which best separates two or 
more classes.  Discriminant analysis is not a classification algorithm although it 
makes use of class labels.  However, discriminant analysis result is mostly used as 
a part of a linear classifier.  The other alternate used in making a dimension 
reduction before using nonlinear classification algorithms.  Discriminant analysis 
can be used in the same circumstances as multiple regressions.  Given a list of 
potential predictors, one can determine which are most effective in predicting 
performances.  It provides a discriminant function which includes only those 
variables that should be used in predicting performances.  Probably the biggest 
advantage of discriminant function over regression is that it measures the 
predictive ability in terms of correct classification.  This is possible since the unit 
of analysis is categorical.  It predicts category membership; given the true 
grouping of criterion.  One can determine how many predictions produced by the 
equations are right. 

Moreover, discriminant function analysis is a multivariate analysis of variance, 
the independent variables are the groups and the dependent variables are the 
predictors. 

The linear discriminant analysis function is given by: 

       𝑍𝐷 = 𝑈1𝑋1 + 𝑈2𝑋2                 ..1 

Where, U = 𝑊−1d          ..2 

And W = (𝑁1 – 1)𝑆1
2 + (𝑁2 – 1)𝑆2

2     ..3 

d = [
𝑋1
̅̅ ̅ 𝐺1 − 𝑋2

̅̅ ̅ 𝐺2 

𝑋2
̅̅ ̅ 𝐺1 − 𝑋2

̅̅ ̅ 𝐺2
]                          ..4 

The basis of the analysis is built on the following foundation, suppose that our 
population consists of two groups’ i.e. 𝜋1 and 𝜋2.  We observe a p x 1 vector X and 
must assign the individual whose measurement are given by X to 𝜋1 or 𝜋2.  We 
need a rule to assign X to 𝜋1 or 𝜋2.  If the parameter of these distributions of X in 
𝜋1 or 𝜋2 are known.  We may use this knowledge in the construction of an 
assignment rule.  If not, we use samples of size 𝑁1 from  𝜋1 and 𝑁2 from 𝜋2 to 
estimate the parameters.  We need a criterion of goodness of classification Fisher 
(1936) suggested using a linear combination of observation and using the 
coefficient so that the ratio of the difference of the means of the linear 
combination in the two groups to its variance is maximized in the two groups to 
its variance is maximized.  In the Fisher’s approach, let the linear combination be 
denoted by: 

Y = 𝜆′X                            ..5 

The mean of Y is denoted by 𝜆′𝜇1 in 𝜋1 and 𝜆′𝜇2 in 𝜋2 and its variance is given 
by 𝜆′𝜀𝜆 in both populations if we assume that the covariance matrices 𝜀1 = 𝜀2 = 
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𝜀, we wish to choose N to maximize: 

 

Q = 
(𝜆′𝜇1− 𝜆′𝜇2)2

𝜆′𝜀𝜆
   ..6 

Differentiating Q with respect to 𝜆′, we have: 

 

𝑑Q

𝑑𝜆
 = 

2(𝜇1−𝜇2)( 𝜆′𝜇1−𝜆′𝜇2)𝜆′𝜀𝜆−2𝜀𝜆 (𝜆′𝜇1− 𝜆′𝜇2)2 

(𝜆′𝜀𝜆)2    ..7 

Equating 
𝑑Q

𝑑𝜆
 to zero, it simplifies to: 

 

𝜇1 − 𝜇2 = 
𝜀𝜆 ( 𝜆′𝜇1−𝜆′𝜇2)

𝜆′𝜀𝜆
     ..8 

Since 𝜆 is used to separate the two population then it may be multiplied by 
any constant.  Thus λ proportional to 𝜀−1(𝜇1 − 𝜇2) i.e. 𝜆𝜇𝜀−1(𝜇1 − 𝜇2).  If the 
parameters are known, then the linear discriminant function is given by Y = 
(𝜇1 − 𝜇2)𝜀−1𝑋, but if the parameters are unknown, then the usual practice is to 
estimate them by: 

 

Y = (𝜇1 − 𝜇2)𝑆−1𝑋    ..9 

Generally, p-measurement made on sample of sizes 𝑁1  and 𝑁2  from 
population 𝜋1 and  𝜋2.  The mean vector of measurement is given by 𝑋1 = (𝑥1, 
𝑥2 , ………., 𝑥𝑝) is 1 x p matrix.  The mean vector of measurement in 𝜋2 is given by 

𝑋2 = (𝑥1, 𝑥2 , ………., 𝑥𝑝).  The covariance between the measurement in 𝜋1 is given 

by p x p matrix. 

 

𝑆1 = 
1

𝑁1−1
∑ (𝑛

𝑖=1 𝑋𝑖1 - 𝑋1)( 𝑋𝑖1 - 𝑋1)   ..10 

The covariance between the measurement in 𝜋2 is given by p x p matrix. 

 

 

𝑆2 = 
1

𝑁2−1
∑ (𝑛

𝑖=1 𝑋𝑖2 - 𝑋2)( 𝑋𝑖2 - 𝑋2)   ..11 

In general, the covariance between measurement in 𝜋𝑖  is given by: 
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𝑆𝑖 = 
1

𝑁𝑖−1
∑ (𝑛

𝑖=1 𝑋𝑗𝑖 - 𝑋𝑖)( 𝑋𝑗𝑖 - 𝑋𝑖) where j= 1,2,3, ……….n; i = 1, 2.

                                                                                                 ..12 

The pooled variance is given by p x p matrix: 

 

𝑆2 = 
(𝑁1−1)𝑆1

2+ (𝑁2−1)𝑆2
2

𝑁1+𝑁2−2 
      ..13 

The inverse of 𝑆𝑝 𝑥 𝑝 is given by  𝑆𝑝 𝑥 𝑝
−1 . 

The cross product term of the measurement in Group 1 is given below: 

 

∑ 𝑋1𝑖
51
𝑖=1 𝑋2𝑖 = 6646.64 

The covariance matrix for Group 1 is given by: 

 

𝑆1 = [
0.2651 −28.3272

−28.3272 175.3977
]  

The cross product of measurement in Group II is given below: 

 

∑ 𝑋1𝑖

51

𝑖=1

𝑋2𝑖 = 3868.19 

The covariance matrix for the measurement in Group II is given by:  

 

𝑆2 = [
0.0703 0.4200
0.4200 77.4571

] 

The linear discriminant function is given by: 

 

𝑍𝐷 = 𝑈1𝑋1 + 𝑈2𝑋2 from equation (1) 

The pooled sum of squares and cross product matrix is computed as: 

𝑍𝐷 = 𝑈1𝑋1 + 𝑈2𝑋2 

U = 𝑊−1d 
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W = (𝑁1 – 1) 𝑆1 + (𝑁2 – 1) 𝑆2 

W = [
14.2392 −1410.48

−1410.48 9854.2844
] 

𝑊−1 = [
−0.00533 −0.00076
−0.00076 −0.000008

] 

d = [
−0.5472

−20.4471
] 

U  = [
−0.0185
−0.0006

] 

𝑍𝐷 = −0.0185𝑋1 – 0.0006𝑋2 

 

Classification rule: 

We define the cut-off as: C = 
(𝑍1𝐷̅̅ ̅̅ ̅̅ +𝑍2𝐷̅̅ ̅̅ ̅̅ ) 

2
 

We compute 𝑍1𝐷
̅̅ ̅̅ ̅ and 𝑍2𝐷

̅̅ ̅̅ ̅ which denote the function at group centroids, 
substituting the CGPA and STA 222/STA 423 fro each of the two groups. 

The discriminant scores of the students in Group I are obtained as follows: 

 

𝑍𝐷 = −0.0185𝑋1 – 0.0006𝑋2 

𝑍𝐷1 = −0.0185(2.46) – 0.0006 (54) = -0.0779 

𝑍𝐷2 = −0.0185(2.47) – 0.0006 (66) = -0.0853 

This is computed for all the members of the group up to the last member as: 

 

𝑍𝐷51 = −0.0185(2.48) – 0.0006 (40) = -0.0699 

The discriminant scores of the students in Group II are calculated as: 

 

𝑍𝐷 = −0.0185𝑋1 – 0.0006𝑋2 

𝑍𝐷1 = −0.0185(3.29) – 0.0006 (65) = -0.0999 

𝑍𝐷2 = −0.0185(3.32) – 0.0006 (80) = -0.1094 

The last member of the group is 𝑍𝐷51 = 0.0699 
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𝑍1𝐷
̅̅ ̅̅ ̅ = - 0.08580196, similarly 𝑍2𝐷

̅̅ ̅̅ ̅ = - 1.08093333 

The cut off mark is defined as: C = 
(𝑍1𝐷̅̅ ̅̅ ̅+𝑍2𝐷̅̅ ̅̅ ̅) 

2
  

C = -0.0969 

The discriminant procedure is as follows: 

Assign an individual to Group 1 if and only if C > -0.0969, also to second 
Group if and only if C ≤ -0.0969. 

 

Table 1:  Probability of misclassification into the two Groups 

Group Predicted at Risk Predicted not at 

Risk 

Total 

1 

Original 

                           2 

39 

 

1 

12 

 

14 

51 

 

15 

                           1           

% 

                          2  

76.5 

 

6.67 

23.5 

 

93.3 

100 

 

100 

 

The total probability of misclassification is denoted by: 

 

P = 
𝑞1

𝑁1
 + 

𝑞2

𝑁2
      ..14 

𝑞1 represents number of students wrongly classified into Group I and 𝑞2 
represents number of students wrongly classified into Group II.  𝑁1 and 𝑁2 is the 
sample size for Groups I and II respectively. 

Overall percentage of correct classifications is 80.30% 

Overall percentage of correct classifications is 19.70% 
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4. CONCLUSION 

 

At the end of the data analysis, it was discovered that 39 out of 51 students at 
risk were predicted at risk.   Also, 14 out of 15 not at risk were predicted not at 
risk.    This gives overall correct classification as 80.3%. 

 

 

5. RECOMMENDATIONS 

 

Discriminant analysis should be the preferred method of operation in 
educational interventions regardless of the other benefits provided.  It is more 
effective because of the weights added to variables under consideration. 

Moreover, Discriminant analysis can serve as a better basis for comparison 
than regression analysis for situations where control groups are not feasible. 
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