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Abstract: In clinical studies, longitudinal and survival data are often
obtained simultaneously from the same individual. Linear mixed effects
models are widely used for analyzing longitudinal continuous outcome da-
ta, while survival models are used for analyzing time-to-event data. It is a
common practice to analyze these longitudinal and time-to-event data sep-
arately. However, when multivariate outcomes are obtained from a given
individual, they can be correlated by nature, and one can attain consider-
able gain in efficiency by jointly analyzing the outcomes. An objective of
this study is to analyze such multivariate data by jointly modeling longitu-
dinally measured continuous outcomes and time-to-event data. In this joint
modeling, we formulate a joint likelihood function for both outcomes and
use the maximum likelihood method to estimate the parameters in the two
sub-models (longitudinal and survival models). We demonstrate the merits
of joint modeling by considering a joint analysis of longitudinally measured
serum albumin (biomarker) and time-to-all-cause mortality data obtained
from a hemodialysis (HEMO) study. This HEMO study was a large NIH
(National Institute of Health) sponsored multicenter clinical trial contrasting
the effects of dialysis dose and dialysis membrane permeability in end-stage
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renal disease patients receiving hemodialysis. We find that the parameter
estimates obtained under joint modeling of HEMO data are more efficient
than those obtained under separate modeling of the outcome variables.

Key words: Hemodialysis; Joint model; Likelihood method; Mixed mod-
el; Survival model
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1. INTRODUCTION

In many biological, biomedical, clinical, and environmental studies, both longitudi-
nal and survival data are measured from the same individual simultaneously. For
analyzing such bivariate outcomes, a common practice is to perform separate anal-
yses of the longitudinal and survival data. If the focus of a study is to estimate the
effects of an intervention or treatment on the longitudinal and survival outcomes
together, then the separate analyses of longitudinal and survival data may provide
biased estimators of the effect size (Ibrahim, Chu & Chen, 2010). In this study,
our objective is to perform a joint analysis of longitudinal continuous outcomes and
time-to-event data. We consider a linear mixed effects model for the longitudinal
outcome variable and a parametric survival model for the time-to-event data. Both
models are linked through shared parameters. We estimate the model parameters
and draw inferences based on the method of maximum likelihood.

Joint modeling (JM) of longitudinal and survival data is a powerful method that
takes into account the association between longitudinal measurements and time-to-
event data. This joint modeling framework is used to make simultaneous inference
on the model parameters for a better assessment of treatment effects (Ibrahim et
al., 2010). In the joint modeling of longitudinal measurements and survival data,
the focus may be on the change in longitudinal response or on the hazard functions
or on both. Depending on the focus of the study, different inferential methods can
be invoked. For example, when a goal is to understand the change in longitudinal
response in relation to the treatment/intervention, all other parameters in the JM
can be treated as nuisance parameters (Lang Wu, 2010). In this scenario, a pseudo-
likelihood method can be utilized to make inference on the parameters of interest
(Pawitan, 2001). When the focus of the study is on both process (longitudinal and
survival), a joint likelihood can be developed for all observed data. The method
of maximum likelihood (ML) can be used to estimate the model parameters by
maximizing the joint likelihood function simultaneously. The ML estimators ob-
tained from the joint likelihood function are efficient and asymptotically normally
distributed under some regularity conditions. Specifically, when JM is used for ana-
lyzing clinical trial data, it provides: 1) efficient estimators of the treatment effects
on the time-to-event, 2) efficient estimators of treatment effects on the longitudinal
biomarker, and 3) improved estimators (with reduced bias and smaller standard
errors) of the overall treatment effects (Chen, Ibrahim & Chu, 2011). Consequent-
ly, JM is a preferred modeling approach over the individual Cox regression model
for time-to-event data. Chen et al. (2011) showed that JM has great implications
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in designing a clinical trial. Higher efficiency of parameter estimators from a JM
framework leads to higher power and lower sample size requirements to detect a de-
sired effect size. Thus these authors advocate the inclusion of longitudinal data into
the design of a study for yielding lower sample sizes with higher power compared
with that of a standard design based on survival data alone.

Our motivation for the joint modeling of longitudinal and survival data arises
from a hemodialysis (HEMO) study. The HEMO study was a large multi-center
clinical trial of 1846 patients with end-stage renal disease where 15 clinical centers
and 72 associated dialysis units participated. Eligible patients were randomly as-
signed in equal proportions to a 2 × 2 design of high/low dose and dialysis with a
high/low flux dialyzer. The primary outcome was death from any cause and one
of the secondary outcomes was serum albumin level. Details of the study design,
patient population, intervention, follow-up, and outcomes can be found in Greene
et al. (2000). The study findings on all-cause mortality analysis was published
in Eknoyan et al. (2002) using the Cox regression model. In this analysis, a set
of covariates were considered including interventions (Kt/V and Flux) and baseline
albumin. Most of the covariates in this model were time-stationary or only the base-
line measurements were used. However, there are some covariates or biomarkers in
the study that are measured longitudinally.

The standard Cox regression model assumes that the hazard rate depends on
time-stationary covariates. When there is a time-dependent exogenous covariate,
then the extended Cox model with time-varying covariates can be used to analyze
time-to-event data. When there is a time-dependent endogenous covariate (e.g.,
biomarker, clinical parameters, etc.) that is associated with the risk of an event,
the extended Cox regression model cannot be used to estimate the risk of hazard.
The values of the endogenous covariate at any occasion cannot be precisely pre-
dicted since they are governed by some random mechanism. The preceding and/or
subsequent values of the endogenous covariate confound the relationship between
current values of the endogenous covariate and risk of hazard. This can lead to
biased estimators of regression coefficients. Even if we get consistent estimators of
regression parameters, these parameters may not be given a causal interpretation
(Fitzmaurice, Laird & Ware, 2004). A good discussion on exogenous and endoge-
nous covariates and their use in Cox regression models can be found in Section 3.4
in Rizopoulos (Rizopoulos, 2012).

At this point, we would like to emphasize that the serum albumin measured as a
secondary outcome variable cannot be considered as an exogenous time-dependent
covariate and hence cannot be used in the extended Cox regression model to esti-
mate the hazard risk. Instead, we can jointly model longitudinally measured serum
albumin biomarker and time-to-event data (Li, Hu & Greene, 2009). We empha-
size that the longitudinal biomarker albumin that we consider for modeling was a
secondary outcome variable in the HEMO study, so that albumin values were col-
lected prospectively on a pre-determined schedule and thus any missing data can
be assumed to be missing at random. Hence our focus in this joint modeling is on
both survival and longitudinal outcomes together with a goal of understanding the
association between the two outcome processes and the effects of interventions on
the outcomes. We consider a parametric approach for JM of longitudinal and sur-
vival data. Our proposed JM approach differs from Li et al.’s (2009) JM framework
in that these authors considered a semiparametric approach for the joint analysis
of longitudinal albumin biomarker and all-cause mortality data, whereas we have
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considered a full likelihood approach for analyzing the data. Our proposed method
and numerical results offer an extension of the method and results of Li et al. We
consider an extended set of risk factors to adjust the effects of intervention on the
outcomes, informed by the covariates used in the original and secondary analyses
of the HEMO dataset.

Joint modeling has received increased attention in the last two decades, and
has been described in a number of reviews. A good (nontechnical) review of joint
modeling can be found in Ibrahim et al. (2010) and Wu et al. (2012), and an
excellent book-length discussions on JM can be found in Rizopoulos (Rizopoulos,
2012). Tsiatis and Davidian (Tsiatis, 2004) provided another succinct technical
review of earlier work on joint modeling of longitudinal and survival data. A recent
work on joint modeling of censored longitudinal and survival data can be found
in Pike and Weissfeld (Pike & Weissfeld, 2012). Wu et al. (2012) discussed that
the JM arises from three different scenarios, i) survival models with measurement
errors or missing data in time-varying covariates, ii) longitudinal models with in-
formative dropouts, and iii) a longitudinal response and a time-to-event data that
are associated via a latent process. A typical joint modeling framework assumes
a linear mixed effects model for longitudinal data and a Cox regression model or
an accelerated failure time model for survival data, where the two models for the
two processes are connected via random effects. A parametric accelerated failure
time model is an attractive alternative to the semi-parametric Cox proportional
hazards model when the proportionality assumption is difficult to meet in studying
the relationship between the survival time and time-varying covariates. In addition,
when time-varying covariates have complications due to intermittent measurements
at different time points for different subjects, measurement errors or missing for
terminal events, JM of longitudinal and survival data can alleviate these problem-
s (Tseng, Hsieh & Wang, 2005). Another common approach for joint inference
of several models with shared unobserved variables is to use a two-stage method
(Lang Wu, 2010). This is closely related to the regression calibration method in the
measurement error literature and is computationally easy to implement. However,
this naive two-stage method may lead to biased estimators of model parameters.
Also, the standard errors of the estimators could be under-estimated by this näive
approach.

The article is organized as follows, in section “Materials and Methods”, we have
developed the joint modeling framework for longitudinal and survival data. In
section “Illustration: HEMO study data analysis”, we have presented the HEMO
study results. We have offered a discussion and conclusion in the final section.

2. MATERIALS AND METHODS

We consider joint modelling of the longitudinal data and survival data when the
survival times are right-censored. We use a latent variable to link the survival model
for time-to-event data to the longitudinal model for biomarker measurements.

Longitudinal model

Suppose in an experiment with N individuals, the ith individual has ni repeated
biomarker measurements yij at times ti1 < ... < tij < ... < tini

. We consider
describing the longitudinal outcomes yij as a function of the vectors of covariates
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xij and zij using the linear mixed effects model

yij = x′ijβ + z′ijvi + εij (1)

for i = 1, ..., N , j = 1, ..., ni, where xij is the jth row of the design matrix Xi for
fixed effects and zij is the jth row of the design matrix Zi for random effects; β is
the vector of regression parameters; the vector of random effects vi is assumed to
be independently and normally distributed with mean vector zero and covarinace
matrix G(θ), depending on the vector of variance components θ; the random error
term εij is assumed to be independently and normally distributed with mean zero
and variance σ2. Further, vi and εij are assumed to be independent.

We can rewrite model (1) in the matrix form (Laird & Ware, 1982)

yi = Xiβ + Zivi + εi (2)

where yi and εi are the vectors of repeated responses and random error terms for
the ith individual. In this setting, we can show that the response vector yi is
multivariate normally distributed with the mean vector

E[yi] = µi = Xiβ

and the covariance matrix

Cov(yi) = Vi = ZiGZ
′
i + σ2Ini

.

The individual maximum likelihood estimators of the regression parameters β
and variance components (θ, σ2) may be obtained by maximizing the marginal log-
likelihood function

logL1(β, θ, σ2) =

N∑
i=1

[
−ni

2
log(2π)− 1

2
log |Vi| −

1

2
(yi −Xiβ)′V −1i (yi −Xiβ)

]
.

Survival model
Let Ti denote the event time for the ith individual and δi denote the censoring

information (δi = 0 if Ti is right-censored; δi = 1, otherwise). We assume that the
censoring is noninformative. Let χi = (χi1, ..., χip)

′ denote the vector of explanatory
variables measured at baseline for the ith individual. Suppose the hazard rate for
the ith individual at time t follows the accelerated failure time model (Klein &
Moeschberger, 2003)

hi(t) = h0(t/ exp(ηi)) exp(−ηi) (3)

where ηi = χ′iα+v′iϕ; the latent vector vi is used to link the survival model (3) to the
longitudinal model (1) for the biomarker measurements, yij , which may be subject
to measurement errors; h0(t) is a baseline hazard function at time t, depending
on unknown parameters τ , and α is a p-dimensional vector of unknown regression
coefficients.

Given the data {(ti, δi); i = 1, ..., N}, the conditional likelihood of the model
parameters may be expressed in the form

L2(τ, α, ϕ) =

N∏
i=1

{hi(ti)}δiSi(ti) (4)
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where Si(t) is the survivor function for the ith individual at time t. We consider a
general Weibull accelerated failure time model for the survival data for which the
baseline hazard function at time t is defined by

h0(t) = λγtγ−1 (5)

where λ and γ are the scale and shape parameters of the Weibull distribution,
respectively. In this setting, we have τ = (λ, γ)′. Then under the accelerated failure
time model (3), the hazard of death at time t for the ith individual is

hi(t) = [exp(−ηi)]γλγtγ−1 (6)

The corresponding survivor function at time t for the ith individual is

Si(t) = exp {−(exp(−ηi))γλtγ} (7)

Here our goal is to estimate the model parameters β, θ, σ2, τ , α and ϕ by
maximizing the joint likelihood for the biomarker measurements and time-to-event
data.

Joint model
For the given the data {(yij , ti, δi); i = 1, ..., N ; j = 1, ..., ni}, the joint likeli-

hood of the survival model (3) and the longitudinal model (1) can be defined as
(Fitzmaurice, Davidian, Verbeke & Molenberghs, 2009)

L(β, θ, σ2, τ, α, ϕ) =

N∏
i=1

∞∫
−∞

{hi(ti)}δiSi(ti)f(yi|vi, β, σ2)g(vi|θ)dvi (8)

where f(yi|vi, β, σ2) is the conditional density of the response vector yi for the given
random effects vi and g(vi|θ) is the density function of vi, which is assumed to be
multivariate normal. Note that when ϕ = 0, the joint analysis would be equivalent
to the individual analyses of the survival model (3) and the longitudinal model (1).
But for a non-zero ϕ, one can attain gain in efficiency in the ML estimators from the
joint analysis of the data. We investigate this further in the analysis of hemodialysis
(HEMO) data discussed in the next section.

3. ILLUSTRATION: HEMO STUDY DATA ANALYSIS

The HEMO study was a fifteen-center randomized clinical trial of the effects of HD
dose and membrane flux on mortality in chronic hemodialysis. Study participants
were randomized to either standard or high dose dialysis (measured with an index
(single pool Kt/V, spKt/V) derived by compartmental modeling of urea kinetics
during dialysis) and to either High Flux (HF) or Low Flux (LF) membranes. Dialy-
sis dose quantification utilizing the spKt/V index, assumes that the total body urea
is distributed in a single compartment of volume C, so that its dialytic removal can
be described as the product of dialyzer clearance (K), dialysis treatment time (t)
divided by V (Daugirdas, 1993). HF membranes allow enhanced removal of larger
(high molecular weight) toxins, so that fluxness can be quantified by the in vivo at-
tained beta-2 microglobulin clearance of < 10 ml/min or > 20 ml/min, respectively.
Patients were randomized to standard (spKt/V 1.25) or high (spKt/V 1.65) and
either HF or LF dialyzers in a 2 × 2 factorial design; randomization was stratified
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by clinical center, age (older vs. younger than 55 years old) and diabetic status.
Enrollment in the HEMO Study began in March 1995 and ended in October 2000,
while follow-up ended in December 31st 2001.

Baseline demographics (age, sex, race, albumin levels, comorbidity scores, dia-
betic status, dialysis access, residual urine volume) and study related information
(Kt/V and flux assignment, clinical center duration of follow up and events), causes
of death and event times were ascertained from the HEMO analytic files distributed
by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDD-
K). In the HEMO study, Comorbidity was measured using the Index of Coexistent
Disease (ICED) (Miskulin et al., 2001), a composite scoring system based on 19
medical (Index of Disease Severity, IDS) and 11 physical impairment categories
(Index of Physical Impairment, IPI). Based on the peak IDS and IPI scores, an
ICED level is assigned on a 4-point scale (0-3) with a higher score reflecting greater
severity. Laboratory assessments of the HEMO study participants were performed
monthly and serum albumin (a marker of nutritional status and an important pre-
dictor of mortality among dialysis patients) was prospectively collected during the
entire study duration. In this study, albumin was measured by nephelometry, a
technique that yields more reproducible and less noisy results than the methods
commonly used in clinical laboratories (Bromocresol Green or Bromocresol Purple)
(Carfray et al., 2000). As a biomarker and a predictor of mortality (Kovesdy &
Kalantar-Zadeh, 2012), serum albumin integrates a variety of factors that directly
or indirectly affect health status, including nutrition (malnourished patients have
lower albumin due to limited intake), inflammation (serum albumin synthesis in the
liver declines during inflammation) and the general hypercatabolic state (which in-
creases albumin degradation) that many patients with chronic wasting diseases and
conditions exhibit. Serum albumin may also be affected by the quality of dialysis,
so that a priori one would like to examine the hypothesis that higher dialysis dose
or enhanced removal of larger uremic toxins may affect outcomes through a change
in the serum albumin level.

In this analysis, the outcome variables are time-to-death from any cause and
longitudinally measured serum albumin. The data consist of 1695 patients with 1
to 16 visits over 6.55 years. The longitudinal serum albumin was measured bian-
nually. We consider the albumin data that were coincidental with the semi-annual
exams. Since we are interested in the time scales that are of relevance to the phe-
nomenon studied (dialysis patients have an approximate annual mortality rate of
20%), so the duration of six months assessment time is considered relevant here.
The time associated with the longitudinal serum albumin measurements is comput-
ed from time of randomization to the biannual exam date when blood was drawn for
serum albumin and other laboratory measurements (including creatinine, a muscle
breakdown product that reflects lean mass and protein intake in dialysis patients).
According to Li et al. (2009), there is a variation in albumin levels depending
on the hemodialysis schedules. The HEMO study patients received dialysis three
times a week following either a Monday-Wednesday-Friday or a Tuesday-Thursday-
Saturday schedule. Because of the variation in total body water, it is anticipated
that the albumin concentration would be lower on Monday or Tuesday than on
other days. Therefore, we created a binary indicator variable for Mon/Tue schedule
to adjust for the effects of days on the longitudinally measured serum albumin.

We have rescaled a few of the covariates for stable parameter estimation and
better interpretation (Hogan, Lin & Herman, 2004). Age is expressed in decades.
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Serum creatinine and diastolic blood pressure are rescaled, dividing by their s-
tandard deviations. We used a dichotomized smoking variable (smoked vs. never
smoked) as covariate in the regression model. The Akaike Information Criterion (A-
IC) is used as a guideline in selecting covariates for the regression model. A smaller
AIC value generally indicates a better model. Although some of the covariates were
neither statistically significant nor provided a lower AIC value, we nevertheless kep-
t them in the regression model for their clinical relevance and face validity, such
as treatments and the Mon/Tue indicator variable. Inclusion of some interaction
terms in the model caused non-convergence of the model fit or warning messages
that the Hessian matrix was not positive definite, and hence it was dropped from
the submodel.

For analyzing the longitudinal serum albumin and time-to-death data, we con-
sidered using the following specific joint model. For the serum albumin data, we
considered the linear mixed effects model

Albuminij = β0 + β1Creatinine + β2Age + β3Black Race + β4Diabetes
+β5Smoking + β6BMI + β7Yrs of Dialysis + β8High Kt/V + β9High Flux
+β10Mon/Tue + β11 Timeij + β12 Diabetes× Timeij + v0i + v1iTimeij + εij ,

(9)
where the random error terms εij are assumed to be identically and independently
distributed as N(0, σ2); the vectors of random effects vi = (v0i, v1i)

′ are assumed
to be independent multivariate normal with mean vector 0 and covariance matrix

G(θ) = G(σv11, σv12, σv22) =

(
σ2
v11 σv12
σv12 σ2

v22

)
Further, εij and vi are assumed to be mutually independent. For all-cause

mortality we used the accelerated failure time model (3) with

ηi = α1High Kt/V + α2High Flux + α3 Age + α4Black Race + α5 Diabetes
+α6 Yrs of Dialysis + α7 ICED score+ψ0v0i + ψ1v1i

(10)

where ϕ = (ϕ0, ϕ1)′ is a vector of “shared” parameters.
The likelihood function corresponding to this JM is defined in equation (8).

The quasi-Newton method in the SAS NLMIXED program is used to optimize
the log-likelihood function and to obtain the maximum likelihood estimates of the
model parameters and their standard errors (SAS Institute Inc.). This program fits
nonlinear mixed effects models and integrates over the random effects by using an
adaptive Gaussian quadrature method. We used 5 quadrature points and set the
relative convergence criterion 1E-9.

The baseline characteristics of all patients are presented in Table 1. In the
HEMO study, 871 (47.18%) patients died during the study period. Patients who
died were likely to be older, male, white, and with a higher burden of comorbid dis-
ease, and were more likely to have tunneled dialysis catheters compared to surviving
patients. Patients who died were in dialysis longer and more likely to be past smok-
ers. On the other hand, patients who died had lower residual urine output, diastolic
blood pressure, calcium, phosphorus, serum total cholesterol, albumin, and creati-
nine. Separate analysis on all-cause mortality is presented in Table 2. This analysis
is based on the accelerated failure time model (3), without the latent variable in
the model. After adjusting for a number of covariates this result indicate that the
higher Kt/V and Flux do not have any beneficial effects on patient survival. All
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Table 1
Baseline Characteristics of 1846 HEMO Dialysis Patients,
USA, 1995-2000

Factors
All

patients
(N = 1846)

Patients
survived

(N = 975)

Patients
died

(N = 871)
p-valuea

Age 57.62(14.04) 53.20(14.1) 62.57(11.89) <0.01
Female sex(%) 56.23 56.82 55.57 0.59
Black race(%) 62.62 64.72 60.28 0.05
BMI 25.46(5.28) 25.84(5.21) 25.04(5.33) <0.01
Years of dialysis‡ 3.75[0.94,4.68] 3.69[0.90,4.29] 3.82[1.02,5.01] 0.04
Residual urine

12.02 14.29 9.53 <0.01
output(%)†

High Kt/V(%) 49.84 50.15 49.48 0.77
High flux(%) 49.89 50.46 49.25 0.60

Access(%)
Permanent

5.80 4.51 7.23
0.01catheter

AVF/AVG/other 94.20 95.49 92.77
Co-morbidity ICED score(%)

0-1 35.59 47.08 22.73
2 31.26 28.10 34.79 <0.01
3 33.15 24.82 42.48

Blood pressure
Systolic 151.02(25.64) 151.27(24.41) 150.74(26.98) 0.65
Diastolic 81.28(15.24) 83.25(14.71) 79.04(15.52) <0.01

Smoking(%)
Never 50.24 53.90 46.14
Past 32.39 28.23 37.05 <0.01
Current 17.36 17.86 16.80
Calcium(mg/dl) 9.34(0.99) 9.38(1.03) 9.29(0.96) 0.05
Phosphorus(mg/dl) 5.85(1.83) 5.94(1.86) 5.74(1.81) 0.02
Serum total

171.39(40.01) 171.42(40.13) 171.37(39.89) 0.98
cholesterol(mg/dl)
Serum albumin

3.63(0.36) 3.92(0.35) 3.79(0.33) <0.01
(g/dl)
Serum creatinine

10.26(2.90) 10.99(2.98) 9.43(2.57) <0.01
(g/dl)

Abbreviations: BMI, body mass index; AVF, arteriovenous fistula; AVG, Arteriovenous grafts;

ICED, Index of Coexistent Disease.
a All P values are two-sided.
† If the patient produces ≥200 ml/day of urine, is urea clearance measured from interdialytic urine

collection>1.5 ml/min (per 35L of total urea volume). (0=no, either produces<200 ml/day or urea

clearance≤1.5 ml/min, 1=yes, 9=unknown, to be determined during Baseline)
‡ Continuous and skewed variables are summarized in the form of Median[1st Quartile, 3rd Quartile]
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Table 2
Separate Analysis of the All-Cause Mortality Data by the
Parametric Survival Model

Variable MLE Std. err t value p-value
95% CI

Lower Upper

High Kt/V 0.0551 0.0523 1.05 0.2927 -0.0475 0.1576
High flux 0.0350 0.0523 0.67 0.5042 -0.0676 0.1375
Age/10 -0.2708 0.0244 -11.1 <.0001 -0.3186 -0.2229
Black race 0.2635 0.0540 4.88 <.0001 0.1577 0.3694
Diabetes -0.1945 0.0568 -3.42 0.0006 -0.3059 -0.0832
Yrs of dialysis -0.0138 0.0067 -2.05 0.0400 -0.0269 -0.0006
Comorbidity

-0.2593 0.0343 -7.57 <.0001 -0.3265 -0.1922
ICED score
Scale para-

0.0054 0.0014 3.95 <.0001 0.0027 0.0081
meter(λ)
Shape para-

1.3803 0.0412 33.47 <.0001 1.2994 1.4611
meter(γ)

Table 3
Separate Analysis of the Longitudinal Albumin Data by the
Linear Mixed Model

Variable MLE Std. err t value p-value
95% CI

Lower Upper

Intercept 3.7871 0.0612 61.88 <.0001 3.6670 3.9071
Creatinine/SD 0.1048 0.0085 12.31 <.0001 0.0881 0.1215
Age/10 -0.0158 0.0057 -2.76 0.0058 -0.0270 -0.0046
Black race -0.0620 0.0157 -3.94 <.0001 -0.0929 -0.0312
Diabetes -0.0141 0.0175 -0.81 0.4187 -0.0484 0.0201
Smoking(never

-0.0071 0.0146 -0.49 0.6264 -0.0358 0.0215
vs. smoked)
BMI -0.0036 0.0014 -2.51 0.012 -0.0064 -0.0008
Yrs of dialysis -0.0082 0.0018 -4.7 <.0001 -0.0117 -0.0048
High Kt/V -0.0063 0.0145 -0.43 0.6662 -0.0348 0.0222
High flux 0.0004 0.0145 0.03 0.9769 -0.0281 0.0289
Mon/Tue -0.0040 0.0061 -0.66 0.5116 -0.0160 0.0080
Time -0.0239 0.0040 -5.89 <.0001 -0.0318 -0.0159
Diabetes×time -0.0168 0.0063 -2.69 0.0073 -0.0291 -0.0045
Residual SD(σ) 0.2585 0.0022 117.71 <.0001 0.2542 0.2628
SD of random

0.2634 0.0069 38.07 <.0001 0.2499 0.2770
intercept(σv11)
Covariance(σv12) -0.0016 0.0010 -1.58 0.1144 -0.0037 0.0004
SD of random

-0.0595 0.0038 -15.63 <.0001 -0.0669 -0.0520
slope(σv22)

191



Joint Modeling of All-Cause Mortality and Longitudinally Measured Serum
Albumin

Table 4
Joint Analysis of Longitudinal Albumin and All-Cause
Mortality Data by a Parametric JM

Variable MLE Std. err t value p-value
95% CI

Lower Upper

Survival Submodel
High Kt/V 0.0294 0.0523 0.56 0.574 -0.0731 0.1319
High flux 0.0294 0.0522 0.56 0.5732 -0.0730 0.1318
Age/10 -0.2554 0.0236 -10.83 <.0001 -0.3017 -0.2092
Black race 0.2558 0.0536 4.77 <.0001 0.1506 0.3610
Diabetes -0.2263 0.0572 -3.96 <.0001 -0.3385 -0.1141
Yrs of dialysis -0.0094 0.0066 -1.42 0.1552 -0.0225 0.0036
Comorbidity

-0.2117 0.0328 -6.46 <.0001 -0.2759 -0.1474
ICED score
Scale para-

0.0048 0.0013 3.77 0.0002 0.0023 0.0073
meter(λ)
Shape para-

1.4823 0.0473 31.34 <.0001 1.3895 1.5751
meter(γ)
Shared inter-

0.9939 0.1133 8.77 <.0001 0.7718 1.2161
cept(ϕ0)
Shared

4.3919 0.7751 5.67 <.0001 2.8716 5.9122
slope(ϕ1)

Longitudinal Submodel
Intercept 3.8847 0.0611 63.58 <.0001 3.7649 4.0046
Creatinine/SD 0.0925 0.0084 11.01 <.0001 0.0760 0.1090
Age/10 -0.0198 0.0058 -3.41 0.0007 -0.0311 -0.0084
Black race -0.0534 0.0159 -3.36 0.0008 -0.0846 -0.0222
Diabetes -0.0151 0.0174 -0.86 0.3875 -0.0492 0.0191
Smoking(never

0.0051 0.0143 0.36 0.7204 -0.0229 0.0332
vs. smoked)
BMI -0.0051 0.0014 -3.61 0.0003 -0.0078 -0.0023
Yrs of dialysis -0.0080 0.0018 -4.49 <.0001 -0.0115 -0.0045
High Kt/V -0.0060 0.0147 -0.41 0.6824 -0.0349 0.0228
High flux -0.0011 0.0147 -0.08 0.9398 -0.0300 0.0277
Mon/Tue -0.0054 0.0061 -0.89 0.375 -0.0173 0.0065
Time -0.0340 0.0045 -7.61 <.0001 -0.0428 -0.0253
Diabetes×time -0.0211 0.0064 -3.31 0.001 -0.0336 -0.0086
Residual SD(σ) 0.2578 0.0022 117.86 <.0001 0.2535 0.2621
SD of random

0.2632 0.0069 37.98 <.0001 0.2496 0.2768
intercept(σv11)
Covariance(σv12) -0.0006 0.0011 -0.54 0.5909 -0.0026 0.0015
SD of random

0.0624 0.0039 15.81 <.0001 0.0546 0.0701
slope(σv22)
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of the risk factors echo similar inference with the earlier analysis and the findings
presented in the literature. Separate analysis of longitudinal serum albumin data
is presented in Table 3. In addition to examining the treatment effects on serum
albumin, in this analysis we focused on the association between serum creatinine
and the longitudinal response variable. Creatinine is a stronger predictor of serum
albumin which matches the findings with Dalrymple et al. (2012). In addition, age,
race, BMI, years of dialysis, diabetes and time interaction are significantly (at the
5% level) associated with serum albumin level. From this analysis, we can say that
there is no significant association between treatment allocation to dialysis dose and
membrane flux arms and serum albumin.

Joint analysis of all-cause mortality and serum albumin is presented in Table
4. From this joint analysis, it is clear that the shared intercept and shared slope
parameter estimates are significant (p < 0.05). Therefore our joint analysis of
these two outcomes is justified and the separate analysis results are likely to be
biased. Although treatment effects are not statistically significant, the parameter
estimates from the JM for the treatments are different from the parameter estimates
from the separate models. Most of the survival submodel parameter estimates are
efficient (the standard errors of the estimates are lower) compared to the separate
survival model parameter estimates. On the other hand, some of the longitudinal
submodel parameter estimates are efficient, and the remaining estimates’ efficiencies
are competitive. The efficiency depends on the association among the outcome
processes and interrelationships among the covariates considered in the model. In
this JM analysis, we could not find that the Mon/Tue variable is a significant
covariate (p = 0.38). In the separate analysis, years of dialysis is a significant risk
factor (p = 0.04) whereas in the joint analysis it is not at all a risk factor (p = 0.16).

4. DISCUSSION

This work demonstrates that the joint modeling of time-to-death and longitudinal-
ly measured serum albumin provides different parameter estimates (and possibly
more efficient estimates) than those obtained from the separate models. The two
separate models were linked by shared parameters, which appeared to be statisti-
cally significant (p < 0.05). Although the treatments effects are not statistically
significant based on the joint analysis of two outcomes, the parameter estimates
are different than those obtained from the separate analysis of time-to-death and
serum albumin. From the joint analysis, we conclude that years of dialysis is not a
significant risk factor for all-cause mortality.

These findings extend earlier work demonstrating the benefit of joint analysis of
time-to-death and longitudinally measured serum albumin (Li et al., 2009). This
finding is important for understanding the association and dependence between the
two outcome processes. The JM provides precise estimates of the interventions and
various risk factors. Based on this finding, patients may decide to start dialysis or
may be evaluated for kidney transplantation. The findings of this study should be
interpreted in light of several limitations. The JM considered here is in between
time-to-death and serum albumin. We did not consider all endogenous longitudi-
nally measured biomarkers for the JM. In our ongoing research on joint modeling
of longitudinal and survival data, we will consider extending this work by includ-
ing several longitudinal biomarkers in the joint analysis. In conclusion, this work
suggests that separate analyses of survival and longitudinal data may provide inef-
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ficient estimates of the model parameters, as compared to those obtained from the
joint analysis in the case when the two outcome processes are strongly associated.
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