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Abstract: Let X and Y be independent random variables, X having a
gamma distribution with shape parameter ¢ and Y having a non-central
gamma distribution with shape and non-centrality parameters b and ¢, re-
spectively. Define W = X/(X 4 2Y'). Then, the random variable W has a
non-central beta type 3 distribution, W ~ NCB3(a, b; ). In this article we
study several of its properties. We also give a multivariate generalization of
the non-central beta type 3 distribution and derive its properties.
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1. INTRODUCTION

The beta type 1 distribution with parameters (a,b) is defined by the probability
density function (p.d.f.)
ua—l(l _ u)b—l
B(a,b)
29

Bl(u;a,b) = O<u<l, (1)
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Non-Central Beta Type 3 Distribution

where a > 0, b > 0, and B(a,b) is the beta function defined by
['(a)I'(b)
T(a+0b)
The beta type 1 distribution is well known in Bayesian methodology as a prior

distribution on the success probability of a binomial distribution. The random
variable V' with the p.d.f.

B(a,b) = Re(a) >0, Re(b) >0

_1(1 + U)—(a+b)

B2(v;a,b) = Bla.b) ,

v >0, (2)

where a > 0 and b > 0 is said to have a beta type 2 distribution with parameters
(a,b). Since (2) can be obtained from (1) by the transformation V = U/(1 — U)
some authors call the distribution of V' an inverted beta distribution. The beta
type 1 and beta type 2 are very flexible distributions for positive random variables
and have wide applications in statistical analysis, e.g., see Johnson, Kotz and Bal-
akrishnan [8]. For an in-depth view the reader is referred to an edited volume by
Gupta and Nadarajah [4] which contains a collection of essays by various authors
covering many different aspects. Systematic treatment of matrix variate general-
izations of the beta type 1 and the beta type 2 distributions is given in Gupta and
Nagar [5]. By using the transformation W = U/(2 — U), the beta type 3 density is
obtained as (Gupta and Nagar [6,7], Cardenio, Nagar and Sanchez [1]),

2awa71(1 _ ,w)bfl

B3(w;a,b) = Bla b1 w) 0<w<1. (3)

It is well known that if X and Y are independent random variables having a
standard gamma distribution with shape parameters a and b, respectively, then
X/(X+Y)~Bl(a,b), X/Y ~ B2(a,b) and X/(X + 2Y) ~ B3(a,b).

The random variable U is said to have a non-central beta type 1 distribution if
its p.d.f. is given by

exp (—6) ut™ (1 —u)*~!
B(a,b)

NCB1(u;a,b;0) = 1F1(a+b;0;0(1 —u)), (4)
where 0 < u < 1 and the confluent hypergeometric function 1 F; has the integral
representation (Luke [9, Eq. 4.2(1)]),

1Fi(a;¢2) = ! >/0 t" 11 —t)"*Lexp(zt)dt, Re(c) > Re(a) > 0. (5)

B(a,c—a
Expanding exp(zt) in (5) and integrating ¢, the series expansion for 1 F is obtained
as _
()T (a )27

Fi(a;¢;2) 6

gl Z L(a)(c+ 5) (6)

The non-central beta type 1 distribution is used in computing power of several
test statistics. Recently, Miranda De S& [10] has shown that the sampling distri-
bution of coherence estimate between one random and one periodic signal is type
1 non-central beta (also see Nadarajah and Kotz [12]). This distribution also ap-
pears in statistical discrimination and sequential testing of nested linear hypothesis.
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Nadarajah [11] has derived distributions of sum, product, and ratios of non-central
beta type 1 variables. By making the transformation V' = U/(1 — U) in (4) the
non-central beta type 2 density is derived as

exp (—6) v~ (1 +v)~(++?) PR
B(a,b) 1F1 a+b,b,1+v s v > 0. (7)

Further, transforming W = U/(2—1U) in (4), the non-central beta type 3 density
is derived as

2a -5 a—1 1— b—1 5(1 —
NCB3(w; a, b; ) = (O w1 W) (a+b;b;(w)>, ®8)

NCB2(v; a,b;0) =

B(a,b)(1 + w)atd 1+w

where 0 < w < 1.

In this article, we study properties of the non-central beta type 3 distribution
and its multivariate generalization. In Section 2, several properties of the non-
central beta type 3 distribution including mixture representation, cumulative dis-
tribution function, moment generating function and moments are derived. Finally,
in Section 3, we define a multivariate generalization of the non-central beta type 3
distribution and study its properties.

2. PROPERTIES

In this section we study some properties of the non-central beta type 3 distribution.
From the non-central beta type 3 density it is straightforward to show that

1 we (1 — w)o-1 —w
/0 (1$10)a+>blF1 (a + b; b; 6(11+w)> dw = 2"%exp(d)B(a,b). (9)

The complementary cumulative distribution function of W is obtained as

_ 2%exp(—8) [T vrH1—w)bt 01 —w)
P(W>w)— B(a7b) /w (1+v)a+b 1F1 a+b,b,ﬁ dv
_ (1—w)/(14w)
= egr()flbé))/ w7 (1 —w)* 1 Fy (a + by by du) du,  (10)
) 0

where the second step has been obtained by substituting v = (1 —w)/(1 + u). Now,
using the series expansion of 1 F} given in (6) and the definition of incomplete beta
function, we obtain

P(W>w)zzexp(j_f)5j

=0

I —w)/(14w) (b + §,a),

where I, («, 8) is the Pearson’s incomplete beta function defined by

I.(a,p) = %/0 v 11 — )P dw.

Figure 1 shows the NCB3 density function for selected values of a, b, and 4. It
can be seen that for ¢ < 1 and b < 1, the NCB3 is U-shaped. Also, for a < 1
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Figure 1
Graphs of the NCB3 Density Function for
Selected Values of a, b, and §.

and b > 1, NCB3 is strictly decreasing. The NCB3 density, for 1 < a < 10, b < 1,

is positively skew symmetric while for ¢ > 10, 1 < b < 2, it is negatively skew

symmetric. For a > 10, b > 2, the curve of NCB3 density tends to symmetry.
Using the series expansion

il" Tla+b+j) 27

Fy(a+ b;b; e
1Fi(a ?) Fa+b) (b+7) 7!

Jj=

where z = (1 — w) /(1 + w), we see that (8) can be represented as

NCB3(w;a,b;6) = Y MB3(w a,b+ ), (11)
: J!
7=0

where 0 < w < 1. Thus the non-central beta type 3 distribution is an infinite
mixture of beta type 3 distributions. Further, by expanding

1—w —(a+b+j7)
2

(1+ w)f(a+b+j) — 9—(a+b+j) {1 - -

_2(a+b+1)z Tlatbtj+k) (1 —wt
F(a+b+j) kK7

the density B3(w;a,b+ j) can be written as

(b+j+k
B3(w;a,b + j) = 27" JZF IR (s b 4+ k). (12)

b+ j)2kk!
If W ~ B3(a,b+j), then the moment generating function (m.g.f.) of W is given
by

(13)

j 1
27" exp(t) @, {b+j,a+b+j;a+b+j;2,t ,
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where the Humbert’s confluent hypergeometric function ®; is defined by

1 /1 271 — ) Lexp(vag) dv
B(a,c—a) J, (1 — vzt ’

®1[a,b1;c; 21,22 = (14)
with |z1] < 1, |22] < oo, Re(a) > 0 and Re(c — a) > 0. Note that for by = 0, P,
reduces to a 1 F} function. For properties and further results on these functions the

reader is referred to Luke [9], and Srivastava and Karlsson [14]. Now, using (11)
and (13), the m.g.f. of W ~ NCB3(a, b; J) is derived as

. exp(—6)d7 , . 1
exp(t)zw@l btjiatb+jiatbtyig,—tl.
§j=0

The relationship between non-central beta type 1, type 2 and type 3 random
variables is exhibited in the following theorem. The proof is straightforward.

Theorem 2.1. Let U ~ NCB1(a,b;6), V ~ NCB2(a,b; ) and W ~ NCB3(a, b;0).
Then, (i) (1 +U)~Y(1 — U) ~ NCB3(b,a;6), (i) 2W/(1 + W) ~ NCBI1(a,b;d)
(iii) (1+W)~Y(1—=W)~NCB1(b,a;9), (iv) V/(2+V)~NCB3(a,b;d), (v) (1+2V)~!
~ NCB3(b,a;6), (vi) 2W/(1 — W) ~ NCB2(a,b;d), and (vii) W11 — W)/2 ~
NCB2(b, a; 6).

The non-central beta densities are obtained by using non-central gamma vari-
ables. The random variable Y is said to have a non-central gamma distribution
with shape parameter k(> 0), and non-centrality parameter § (> 0), denoted by
Y ~ Ga(k;0), if its p.d.f. is given by
exp (=0 —y)y“

Ga(y; k;0) = T00)

oF1 (k;6y), (15)

where y > 0 and
> I'(a) &
0 1(0’ Z) ;F(a+])j'

For § = 0, the non-central gamma distribution reduces to a gamma distribution
and we have Ga(y; a;0) = Ga(y; a).

Let Y1 ~ Ga(a) and Yy ~ Ga(b; §) be independent. Then, it is well known that
(Sénchez, Nagar and Gupta [13]),
a1

i N ~Bl(a,b;6), V<L~ B2a,b6), (16)

U
Yy + Ya Ys

where X £ Z means that X and Z have identical distribution. Next, we state the
following result from Fang, Kotz and Ng [2], and Fang and Zhang [3].

Theorem 2.2. Let Y and Z be n-dimensional random vectors. Further, let' Y Y/

and f;(-),7 =1,...,m be Borel measurable functions. Then,
f1(Y) f1(Z)
. d .
Jm (YY) fm(Z)
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Now, using (16) and the above theorem, it is easy to see that

U d Yl

d
W = = .
2-U Yi+2Y,

(17)

Further, using the stochastic representations (16) and (17) and Theorem 2.2, all
the results of the Theorem 2.1 can be established easily. The representation (17)
suggests the obvious extension

w. 2 i 4
¢ Yi + cYs V+ec

|

(c>0), (18)
where V' ~ B2(a, b; ). The p.d.f. of W, is

c exp(—8)w (1 —w)*"! 5(1 — w)
B(a,b)[1 + (c — 1)w]etd 1F1(a+bb1+(c_1)w), 0<w<l. (19)

Further, using (19), it is easy to see that for a > 0,0 > 0 and K > 0,

L= (1 — w)b! 0(1 —w) _exp(d)B(a,b)
/0 T+ Koy M (“” T R ) do=—1"%w - @

For K = 1, the above integral reduces to (9) and for § = 0 it simplifies to

Vw11 — w)b—! _ B(a,b)
/0 i+ Ko W= 0 mye 1)

Next, we give the definition of the Gauss hypergeometric function o Fy which we
need to derive moments. The integral representation of the Gauss hypergeometric
function is given as (Luke [9, Eq. 3.6(1)]),

1 te 1(1 _ t)c a—1
F: b;c;z) = dt 22
2 1((1, 7072) B(G,C—G)A (1—Zt)b ) ( )

where Re(c) > Re(a) > 0, |arg(1 — 2)| < 7. Expanding (1 — 2¢)7%, |2t| < 1, in (22)
and integrating ¢, the series expansion for 5 F} is derived as

ir(c (@ r(bﬂ)zﬂ

Fi(a,b;
21a CZ FCL c+]) j'

(23)
7=0

From (22), it easily follows that

1 a—1 b—1
w1 —w) B(a,b) K
— v 7 qw=-"27 F(becat+b ——).
/0 R A (R S T

Also, by expanding 1 F; and using the above integral, we obtain

Lawe=1(1 —w)b! 01 —w)
/0 T+ EKwe (d 1+Kw> dw
_ D(a)'(d) i L(b+7)(c+r) 5"
- T'(e)(1+K)© “T(a+b+r)(d+r) (14 K)r!

r=0

34



Nagar, D. K., & Ramirez-Vanegas, Y. A. /Progress in Applied Mathematics, 4(2),
2012

K
X o] (b—|—7‘ c+ria+b+r; 1—|—K>

For ¢ = a + b, the above expression reduces to

Pt (1 - w)h ! 5(1 — w) ~ B(a,b) o
/0 (1+Kw)a+b1F( +bd1+K) dw = G ar L (di0). - (24)

For d = b, we obtain
1 a—1 b—1
w1 —w) 5(1 —w)
—— b ———2 | d
/0 (1+Kw)C ! 1(67 "1+ Kw ) "
= T(c+r) or
1—|—KCT:0Fa+b+r (1+ K)rr!

K
X oIy (b—i—r c+ria+b+r; 1+K)

Theorem 2.3. Let W ~ NCB3(a, b;0), then

B [W’”(l — W)S} _ iexp(—é)tsj Fla+b+)T(a+r)TB+7+s)

1+ W) LGl P (@b + )T (a+b+j +7+5)

1
><2F1(b+j+s,a+b+j+t;a+b+j+r+s;2), (25)

where Re (r+a) > 0, Re(s+b) > 0 and o F is the Gauss hypergeometric function.
Proof. Using (11), we have

. [WT(l - v;/)} _ i exp(—8)d’ Ee {WT(1 - W)S] ’

arwy | =& g A+ wy
where
E W - wy —/1 wr(l_w)SB?)( ;a,b+7)d
CLTarwr | T Qrwyr T
2a 1 wa+r71(1 _ w)b+j+sfl
= - dw.
B(a,b+j)/o (1 +w)otbtitt v
Writing
. —(a+b+j+t)
(14 w)(atbhitt) = 2(a+b+j+t)[1 — ; ]

and substituting z = 1 — w, we obtain

E Wr(l _ W)s B 1 /1 (1 )a+r 1. b+j+s 1dZ
LAWY | 22WFBlab+4) ), (1 — z/2)etbritt

Bla+rb+j+s)

~ PHFB(b )
35
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1
X oFy <b+j+s,a+b+j+t;a+b+j+r+s;2),

where the last step has been obtained by using (22).
Finally, substituting appropriately, we get the desired result. O

Substituting » =t = h and s = 0 in (25) and using the result o Fy(b,a + b +
hia+b+h;1/2) =27 we get

B wh _i exp(—8)8’ T'(a+b+j)'(a+h)
(1+W)h _j:O j' 2T (a)T(a+b+j+h)
~ Tle+bI(a+h) . .
= 2hF(a)F(a+b+h)1F1(a+b,a+b+h,5),

where Re (h + a) > 0.
The above expression can also be obtained by observing that

W 4 Y; a U

< L 2
1+W 2, +Yy) 2 (26)

where U ~ NCB1(a, b; 9).
3. NON-CENTRAL DIRICHLET TYPE 3 DISTRIBUTION

The multivariate generalizations of the non-central beta type 1 and type 2 densities
are defined by

exp(—5) H;;l u?i*1(1 _ Z:L:l ui)bfl n N n
Blay, ..., an,b) Py ;az—s—b,b,é 1= w) ), @

i=1
where u; >0,i=1,...,n, > u; <1, and
exp(—0) [T, v M1+ 37, v;)~ Bz aith) = )
p( )Hzfl 7 ( szl ) 1}(—,1 Zaz‘i'b, b, _ 7 (28)
B(ah...,an,b) = 1"’2;‘:1 Uy
respectively, where v; >0,7=1,...,n,a; >0,i=1,...,n,b> 0 and

I'(0) ITi=, Tas)
Lo ai +b)

These distributions, defined and derived by Troskie [15], are well known in the
scientific literature as the non-central Dirichlet type 1 and type 2 distributions. We
will write (Un,...,U,) ~ NCDI1(ay,...,ay;b;d) if the joint density of Uy,..., U,
is given by (27) and if positive random variables V1, ..., V,, follow the density given
by (28), then (V1,...,V,) ~ NCD2(ay,...,ay,;b;0).

A natural multivariate generalization of the non-central beta type 3 distribution
can be given as follows.

B(ay,...,an,b) = (29)
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Definition 3.1. The positive random variables W1, ..., W,, are said to have a non-
central Dirichlet type 3 distribution, denoted by (Wh,...,W,,) ~ NCD3(aq,...,an;
b;9), if their joint p.d.f. is given by

[T wf (A= wi) ! - S(1-3"7 wi)
Clay, ..., an,b)—==2" _ = Fy a;i+b;b; ——==—=|, (30)
(14 200 wy) =iz th ' ; L+ 3w

where w; > 0, i =1,...,n, > w; <1 and C(ay,...,an,b) is the normalizing
constant.

The normalizing constant in (30) is given by

(Clay, ... an,b)} " = // ITi-, w?iil(lfz%lyji)b_l

[Tim, T(ai) /1 wi=1 % (] — )Pt
F(E? 1 ai) 0 (1 + w)zl-":l a;+b

n 6( w)
F - 7
X1 1<zélal+bb +w>dw,

where the last line has been obtained by using Liouville-Dirichlet integral. Now,
evaluating the above integral using (9) and simplifying the result, we get

{C(ay,...,an,b)} "t =27 2y ai exp(0)B(aq, ..., an,b). (31)

The next theorem derives the Dirichlet type 3 distribution from the Dirichlet
type 1 distribution.

Theorem 3.1. Let (Uy,...,U,) ~ NCD1(ay,...,a,;b;6). Define W; = U;/(2 —
Sr U, i=1,...,n. Then, (Wi,...,W,) ~ NCD3(a,...,an;b;0).

Proof. Substituting u;, = 2w;/(1 + Z W), 1= ,n with the Jacobian of
transformation J(ui,...,un — wi,...,wy) = 2™(1 —|— Zl Lw;)~ (D in (27) and
simplifying, we get the desired result.

O

Theorem 3.2. Let Y1,...,Y,+1 be independent random wvariables, Y; ~ Ga(a;),
i=1,...,n and Y41 ~ Ga(b;d). Define U; = Y/Z:"+1 i=1,...,n, V; =
Y;/Yoy1,i7=1,...,nand Z = Z"H Y;. Then, Z is mdependent of (U17 Uy
and (V1,..., Vo). Further (Uy,...,U,) ~NCDI1(ay,...,an;b;9) and (Vi,...,V,) ~
NCD2(ay, ..., an;b;9).

Let Y1,...,Y,+1 be independent random variables, ¥; ~ Ga(a;), i =1,...,n and
Yi+1 ~ Ga(b; ). Further, let (Uy,...,U,) ~ NCD1(ay,...,a,;b;0), (Vi,..., V) ~
NCD2(ay,...,a,; b;d) and (W1,...,W,,) ~ NCD3(ay,...,a,;b;d). Then,

Y Y,
Uty Un) & | s oo+ = | ~ NCD1(ay, ..., an; b;0) (32)
Y Y X4V
=1 =1 i=1 1
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and

Y, Y,
(vl,...,vn)i( LI >~NCD2(a17...,an;b;5). (33)
Yn—i—l Yn—i—l

Now, using (32), Theorem 2.2 and Theorem 3.1, it is easy to see that
)% Y,
d 1 n
Wi, ..., Wy) = = N e
( ' ) (Z@:l Yi+ 2Yn+1 Zi=1 Yi+ 2Yn+1>
~ NCD3(ay,...,an;b;0). (34)

Further, from (33) and (34), it follows that

Vi Vi
(Wla"'aWn)i n . L) n o
Zi:l‘/i+2 Zz:l‘/Z+2

and

1_2?:1Wi7”',1_2?:1wi

Now, using (34) and Theorem 2.2, the next theorem can easily be established.

2W 2W,
(Vlaavn)i< - >

Theorem 3.3. Let (W1,...,W,,) ~NCD3(ay,...,an;b;d). Then for1 <s<n-—1,

Ws+1 Wn
1_25:1‘/[/%‘7”.7 1‘2?:1Wi

If (Uy,...,U,) ~ NCD1(aq,...,an;b; ), then it is well known that (Sdnchez, Na~
gar and Gupta [13]) for 1 <m <n, (Ui,...,Up) ~ NCD1(a1,. .., m; Y iy, 11 @i+
b;9). In the following theorem we will derive similar result for non-central Dirichlet
type 3 variables. However, the marginal distribution in this case is not a non-central
Dirichlet type 3 distribution.

> ~ NCD3(ast1,---,an;b;0).

Theorem 3.4. Let (Wy,...,W,) ~ NCD3(ay,...,an;b;5). Then, the marginal
density of (X1,...,Xs) is given by

i exp(—9)d” Hle w?i—l(l_zle wi)Z?:S+laj+b+r71
r=0 ! 2b+rB(a1a'--7asaZ?:s+1(li+b+7’)
- " 1—5
X 2F1<Zai+b+r7b+r; Zai+b+r; Z;Z—1>
i=1 i=s+1

Proof. Transforming X; = (1 — > 7_, W;)"'W;, i = s+1,...,n with the Jacobian

J(Wog1y. oWy = Toq1,..,2n) = (L=, w)"* in (30), the joint density of
(Wy,...,Wy) and (Xs41,...,X,) is given by

n s i—1 n_ a;+b—
C(a an,b) H DR € B L 1o w1 = w®) = st
LTyewoyQp, A1 i [1+w(1) +(1 7w(1))z(2)}2?:1 a;+b

- 5(1 —wM)(1 — 2>
X lFl (Z ai+b; b; ( )( )(2)>7 (35)

1 — o0
P 1+w® + (1 —w®)z
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where v = Y7 w;, 2 = Yo Ty Ty > 0,0 = 1,08, 37 @ < 1,
w; >0,i=5+1,...,n, 3" . w; <1. Now, integrating z,41,...,z, in the above
expression, we get the joint density of Wy, ..., Wy as

Clat,...,an,b Hw‘“fl (1 — wW)Xj=srr b1

X . Hi:s+1 xy *1(1 — x(2))b71
(14 w® + (1 — wh)z@)]Xiz aith

0<3 i opq wi<l
z;>0,i=s+1,....,n

" 51— w1 —2®
x 1 Fy (Za + ;b @ % x<2> H dz;, (36)

=1 i=s+1

where 0 < z; <1,i=1,...,s, >0, ; <1 Now, using Liouville-Dirichlet integral
and (24), the integral given in (36) is evaluated as

ML, | Pt (1l
P31 @) Jocaca [+ w® + (1 — wD)g]Xiz aith

- 5(1 —wM)(1 —2)
Xk (Za" +hibig 3w+ (1 —wD)z dz

=1
T(0) [Ti gy T(ai) i PO iy aitbtr) [6(1=300 w)l"
T o, Gt (S a; + b) &= DY iai+b+r) 27 1|

n 1—w®
><2F1<Zai—|—b+r,b+r; Zai—l—b—i—r;Tw .

=1 i=s5+41

)bfl

Finally, substituting appropriately, we get the result. O

Integrating ws, ..., ws in (35) using Liouville-Dirichlet integral and (24), we get
the p.d.f. of (Xs41,...,X,) as given in Theorem 3.3. Using the result (Luke [9,

Eq. 3.8.4)),

x
oFy(a,byc;x) = (1 — ) 0oy <c— a,b;c;—1 x) ;

the p.d.f. of (Wh,..., W) given in Theorem 3.4 can be re-written as

3 exp(—4)d” 9>, as
r=0 r! B(a1,...,aS,Z?:S+1ai+b+r)
X H: 1 wal_l(l — Zf 1 wi)Z;’L:erl aj+b+r—1

(14 35 wy) iz aitbtr
X oF ai+b+rb+r > ai+b+r —=E= 1)
’ 1(2 i:;rl 1+Z¢_1U/i>

It can clearly be observed that the p.d.f. of (W7,...,W,,) given in Theorem 3.4
is not a non-central Dirichlet type 3 density.
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The joint moments of Wy, ..., W, are given by

| U S
L. Tn = -
E[Wl Wn ] C(ah .oy Qp,b / / 1 + ZT'L_l wi)Z?:I a;+b

S wi<l
w;>0,i=1,...,n

S(1=S" w)\ &
x 1 Fy (Zaz+b b; (1+§z;:_1ww)> Hdwi
1 7 _

=1

_ Clay, a , G,y b) H?:nl I'(a; + i) BWEiar,
C(izy airb) T2 (ai + 7))

where W ~ NCB3(}_"_,a;,b). Computing E[W2=i=17] using Theorem 2.3, substi-
tuting for C(a1,...,an,b) and C(>_1_, a;,b) from (31) and simplifying the resulting
expression, we obtain

EWY - Wi] =

[T, (a; +ri)§: exp(—6)07 T, ai+b+ 7))
2° H?:l ['(a;) =0 J! 2JF[Z (az + 1) + b+ 7]

n n 1
X 2F1<b—|—j,2ai+b+j;2(ai+ri)+b+j;2).

i=1 =1

In the next theorem we give distribution of partial sums of random variables
distributed as non-central Dirichlet type 3.

Theorem 3.5. Let (Wq,...,W,) ~ NCD3(ay,...,a,;b;0) and ny,...,ng be pos-
itive integers such that Zle ni = n. Further, let agy = Z?;n;lﬁ-l a;, ny =
0, nf = Z;:lnj, i=1,...,0. Define Z; = W;/Wy,j =nj_;+1,...,n7 —1 and
Wiy =3, 1 Wy, i=1,....L. Then,

(i) (Znz_ 415+ Znr—1)yi=1,...,0 and (W), ..., W(y)) are mutually independen-
t,

(Z’L) (Zn;‘71+17 ey Zn;‘—l) ~ Dl(an:71+1, FN 70%;«_1; an:), = 1, NN 76, and

(ZZZ) (W(l), ey W(g)) ~ NCD3(6L(1), ey a(g); b; (5)

Proof. Let Y7,..., an YnIJrl, . 7Yn§, ey Ynz,ﬁla . 7Yn; and Y, 41 be mutually
independent random variables, Y; ~ Ga(a;),j =n;_;+1,...,n;,i=1,...,¢, and
Yi+1 ~ Ga(b; ). Then

(Wl, “ee 7Wn’1‘7Wn;‘+1a ce ,an,. cey W,L271+17 SN ,an)
d (Yl Yn{ YnTJrl Yng YVn;ffﬁ,—l Ynz>
- )

T ey e R, (37)

where Y = 320 ;) + 2¥,1 with Yy = 3%
and the above representation, we have

W 11 Whs 1 Yor 41 Y1
(Zni_+1oe s Zugm1) = | e 4 ey |-
(7) (1) (1) (1)
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Further, from Theorem 3.2, Y(;) and (Znx_ 41, ., Zn:,l) are independent, Y(;) ~
Ga(a(;y) and (Zn;«71+1, e Zn;_«_l) ~ NCDl(anLIH, ey Qnro1; an;). Since, for
i # Kk, (Znr 4155 Znr—1, Y(s)) and (Zn:71+1, ooy Dnz—1, Y(x)) are functions of
two independent sets of variables {Yy« 11,...,Y,:} and {Ynzilﬂ, . >Yn;}7 re-
spectively, mutual independence is straightforward. Using (37) and Theorem 2.2,
the stochastic representation of (Wyy,..., W) is given as

Y N Yo
Sy Yoy + 2V i1 Yoy + 2V

d
(W(l),...,W(g)) = (

where Y(y),...,Y(y and Y, ;1 are independent, Y{;) ~ Ga(a;), i = 1,...,¢ and
Yoa1 ~ Ga(b; §). Now, the desired result follows from (34). O

Corollary 3.5.1. If (Wy,...,W,,) ~ NCD3(ay,...,a,;b;d), then

Zn: W; ~ NCB3 <2n: a;, b)
=1 =1

and

W] anl
Z?:l Wi T Z?:l Wi

are independent. Furthermore, > W; and

) ~Dl(a,...,an—1;an),

> Wi -
==~ Bl E aiyan |, 1<s<n—1,
EiZI 7 i=1

are independent.

In next six theorems we give several factorizations of the non-central Dirichlet
type 3 density.
Theorem 3.6. Let (Wy,...,W,) ~NCD3(ay,...,a,;b;0). Define Y, = Z?Zl W;
and Y; = Z;Zl WJ/Z;ill W;,i=1,...,n—1. Then, Y1,...,Y, are independent,
Y; ~ By aj,a41), i=1,...,n—1, and Y, ~ NCB3(}_}", a;, b; 0).

Proof. Substituting wy = yy, H?:_ll Yi, Wo = Yo (1—y1) H?:_; Yiy eoey W1 = Ypn (1—
Yn—2)Yn—1 and wy, = yn (1 —y,—1) with the Jacobian J(w1,...,wn = y1,...,yn) =
[Ty in (30) we get the desired result. O
Theorem 3.7. Let (Wi,...,W,) ~ NCD3(ai,...,an;b;0). Define Z, =37 | W;
and Z; = Wi+1/Z;:1 Wi, i=1,....,n—1. Then Zi,...,Z, are independent,
Zi ~ B2<G,i+1, Z;’:l aj), 1= 1, ey — 1, and Zn ~ NCBS(E:l:l a;, b, (5)

Proof. The desired result follows from Theorem 3.6 by noting that (1 —Y;)/Y; ~
B2(ai+1, E;’:l (J,j). O
Theorem 3.8. Let (Wy,...,W,) ~NCD3(aq,...,a,;b;0). Define Y, = Z?:l W;
and Y; = Z;Zl W;/Wis1, @ = 1,...,n — 1. Then Y1,...,Y, are independent,
Vi ~B2(305_, aj,ai41), i=1,...,n =1, and Y, ~ NCB3(3_[_, a;, b;9).
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Proof. The desired result follows from Theorem 3.7 by observing that 1/Z; ~
BQ(Z] 185, Qit1)- [

Theorem 3.9. Let (Wy,...,W,) ~ NCD3(ay,...,an;b;6). Define Y, =377 W;
and Y; = Wz/Z;L:l Wi, i=1,...,n—1. Then Yi,...,Y, are independent, ¥; ~
Bl(ai, )5 i1 a5),i=1,.. n—l and Y, NNCBS(Zl 164,0;9).

Proof. Substituting w1 = yny1, w2 = Yny2(l — 41), .., Wno1 = YnYn—1(L —y1) - -~
(1 = Yn—2), and w, = yn(l —y1)--- (1 — yp—1) with the Jacobian J(wy,...,w, —
Yis- o yn) =y T2 (1 — )™ in (30), we get the desired result. O

Theorem 3.10. Let (Wl, e, W) ~ NCD3(a1, ooy an; b3 0). Define Z, =370 W
and Z; = Wi/ 30 i Wi, i = 1,...,n— 1. Then Z,...,Z, are independent,

Zi ~B2(a;, >0 05), i=1,...,n—1, and Z, ~ NCB3(3_/_, a;,b;9).

Proof. The desired result follows from Theorem 3.9 by noting that Y;/(1 — Y;) ~
B2(a27 Z] —=i+1 @ ) U

Theorem 3.11. Let (Wi,...,Wy,) ~ NCD3(a1,...,an;b;9). Define Y, = >3 X

and Y; = Z] i1 Xj/Xi,i=1,...,n—1. Then Y1,...,Y, are independent, Y; ~
B2(3 ") i aj, i), i=1,..., 1 and Y,, ~ NCB3(>_""_, a;,b;9).

Proof. The desired result follows from Theorem 3.10 by observing that 1/W; ~
BQ(ZJ i+1 aj7ai). D
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