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The Coproduct of Unital Quantales

Shaohui LIANG1,∗

Abstract: In this paper, the definition of the saturated element in quantale is given, Based on the
coproduct of monoids, the concrete forms of the coproduct of unital quantales is obatined. Also,
some properties of their are discussed.
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1. INTRODUCTION

Quantale was introduced by C.J.Mulvey in 1986 in order to provide a lattice theoretic setting for studying
non-commutative C*-algebras[1], as well as a constructive foundations of quantum logic. A quantale-besed
(non-commutative logic theoretic) approach to quantum mechanics was developed by Piazza. It is known
that quantales are one of the semantics of linear logic. The systematic introduction of quantale theory came
from the book [2], which written by K.I.Rosenthal in 1990. Quantale theory provides a powerful tool in
studying noncommutative structures, it has a wide applications, especially in studying noncommutative
C*-algebra theory [3], the ideal theory of commutative ring[4], linear logic [5] and so on. Following
C.J.Mulvey, the quantale theory have been studied by many researches [6-21].

Since coproducts is very important concept in many categories, and their coproducts product have been
studied systemically. In this paper, the concrete forms of the coproducts of unital quantales is obatined. For
notions and concepts concerned, but explained, please refer to [2,22].

2. PRELIMINARIES

Definition 2.1[2] A quantale is a complete lattice Q with an associative binary operation “&” satisfying:

a&(
∨
i∈I

bi) =
∨
i∈I

(a&bi) and (
∨
i∈I

bi)&a =
∨
i∈I

(bi&a),

for all a, bi ∈ Q, where I is a set, 0 and 1 denote the smallest element and the greatest element of Q,
respectively.

A quantale Q is said to be unital if there is an element u ∈ Q such that u&a = a&u = a for all a ∈ Q.

Definition 2.2[2] Let Q be a quantale and a ∈ Q.

(1) a is right − sided if and only if a&1 ≤ a.

(2) a is le f t − sided if and only if 1&a ≤ a.
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(3) a is two − sided if and only if a is both right and left side.

(4) a is idempotent if and only if a&a = a.

Definition 2.3[2] Let Q and P be quantales. A function f : Q −→ P is a homomorphism of quantale if
f preserves arbitrary sups and the operation “&”. If Q and P are unital, then f is unital homomorphism
if in addition to being a homomorphism, it satisfies f (uQ) = uP, where uQ and uP are units of Q and P,
respectively.

Definition 2.4[2] Let Q be a quantale. A subset S ⊆ Q is a subquantale of Q iff the inclusion S ↪→ Q is a
quantale homomorphism, i.e., S is closed under sups and “&”.

Definition 2.5[2] Let Q be a quantale. A quantic nucleus on Q is a closure operator j such that j(a)& j(b) ≤
j(a&b) for all a, b ∈ Q.

3. THE COPRPDUCTS OF MONOIDS

The present section is dedicated to The Coproducts of Monoids. we will show its existence, and some
properties are discussed.

Let {Ai}i∈I be a family of nonempty monoids with ∩
i∈I

Ai , ∅. A word on {Ai}i∈I is a sequence (a1a2 · · · · · · ak)

with ai ∈ Ai, where k ∈ N,and ai,a j belong to different monoids. Let us Π∗
i∈I

Ai to denote the set of

words on {Ai}i∈I . Define binary operator “ ∗ ” : ∀ w1 = ai1 ai2 · · · · · · ais , w2 = b j1 b j2 · · · · · · b jt ∈ Π∗,
w1 ∗ w2 = ai1 ai2 · · · · · · ais b j1 b j2 · · · · · · b jt .

If ai,b j belong to the same set Ai, then ai,b j designated as letter of Ai. It is easy to show that Π∗
i∈I

Ai is a

monoid, the empty word is the unit of Π∗
i∈I

Ai and is denoted e∗.

Theorem 3.1 Let {Ai}i∈I be a family of nonempty monoids with ∩
i∈I

Ai , ∅, the map µi : Ai −→ Π∗
i∈I

Ai

ł x 7−→ µi(x) = x. If gi : Ai −→ Gis a family of monoid homomorphisms. Then there exists a unique
monoid homomorphismh : Π∗

i∈I
Ai −→ G such that h◦µi = gi for all i ∈ I, and this property determines Π∗

i∈I
Ai

uniquely up to ismorphism. In order words,((µi)i∈I ,Π
∗

i∈I
Ai) is a coproduct in the category of monoids.

Proof. At first, we define h : Π∗
i∈I

Ai −→ G give by ∀ w1 = ai1 ai2 · · · · · · ais ∈ Π∗
i∈I

Ai,

h(ai1 ai2 · · · ais ) =

{
eG, w1 = ∅
gi1 (ai1 ) · gi2 (ai2 ) · · · · · gis (ais ), otherwise.

Then the map h is well defined and it also preserves unit. Next, we will prove that the map h preserves
the operator of Π∗

i∈I
Ai.

For all w1 = ai1 ai2 · · · · · · ais w2 = b j1 b j2 · · · · · · b jt ∈ Π∗, then

h(w1 ∗ w2) = h((ai1 ai2 · · · ais ) ∗ (b j1 b j2 · · · b jt ))
= h(ai1 ai2 · · · ais b j1 b j2 · · · b jt )
= gi1 (ai1 )gi2 (ai2 ) · · · gis (ais )g j1 (b j1 )g j2 (b j2 ) · · · g jt (b jt )
= (gi1 (ai1 )gi2 (ai2 ) · · · gis (ais )) · (g j1 (b j1 )g j2 (b j2 ) · · · g jt (b jt ))
= h(ai1 ai2 · · · ais ) · h(b j1 b j2 · · · b jt ).

It is not hard to see that h ◦ µi = gi. At last, we will prove the h is an unique monoid homomorphism.

Now, let h′ : Π∗
i∈I

Ai −→ G be another monoid homomorphism with h ◦ µi = gi. For all w1 =

ai1 ai2 · · · · · · ais ∈ Π∗,we have
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h′(w1) = h′(ai1 ai2 · · · ais ) = h′(µi1 (ai1 )µi2 (ai2 ) · · · µis (ais ))
= h′(µi1 (ai1 )) · h′(µi2 (ai2 )) · · · h′(µis (ais ))
= gi1 (ai1 ) · gi2 (ai2 ) · · · gis (ais )
= h(µi1 (ai1 )) · h(µi2 (ai2 )) · · · h(µis (ais ))
= h(µi1 (ai1 )µi2 (ai2 ) · · · µis (ais ))
= h(ai1 ai2 · · · ais ) = h(w1).

Therefore, ((µi)i∈I ,Π
∗

i∈I
Ai) is a coproduct of {Ai}i∈I in the category of monoids.

4. THE SATURATED ELEMENT OF QUANTALES

Let Q is a quantale, R ⊆ Q × Q is a relation, we want to construt a new quantale with R.

An element s ∈ Q is saturated if ∀ a, b, c, d ∈ Q,with (a, b) ∈ R, then a&c&d ≤ s ⇐⇒b&c&d ≤ s,
c&a&d ≤ s⇐⇒c&b&d ≤ s.

Let us S R(Q) denote the set of all saturated element of Q. Obviously, any meet of saturated sets is
saturated.

Theorem 4.1 Let Q be a quantale with e, R ⊆ Q × Q is a relation on Q, then S R(Q) is a quotient quantale
of Q.

Proof. Obviously, S R(Q) is nonempty set, and meet of S R(Q) is closed.

For all x, y, z, a, b ∈ Q, s ∈ S R(Q) with (a, b) ∈ R, we have

a&x&y ≤ z −→l s⇐⇒a&x&y&z ≤ s⇐⇒b&x&y&z ≤ s⇐⇒a&x&y ≤ z −→l s,

x&a&y ≤ z −→l s⇐⇒x&a&y&z ≤ s⇐⇒x&b&y&z ≤ s⇐⇒x&b&y ≤ z −→l s,

a&x&y ≤ z −→r s⇐⇒z&a&x&y ≤ s⇐⇒z&b&x&y ≤ s⇐⇒b&x&y ≤ z −→r s,

x&a&y ≤ z −→r s⇐⇒z&x&a&y ≤ s⇐⇒z&x&b&y ≤ s⇐⇒x&b&y ≤ z −→r s.

Thusz −→l s, z −→r s ∈ S R(Q).

Therefor S R(Q) is a quotient quantale of Q.

Theorem 4.2 Let Q be a quantale with e, R ⊆ Q × Q is a relation on Q. Define vR : Q −→ Qsuch that
vR(x) =

∧{s ∈ S R(Q) | x ≤ s} for all x ∈ Q. Then is a quantale nucleus on Q.

Theorem 4.3 Let Q be a quantale with e, R ⊆ Q × Q is a relation on Q. We have

(1) vR(Q) = {x | vR(x) = x} = S R(Q);

(2) The map vR : Q −→ S R(Q)is a quantale surjective homomorphism;

(3) vR(e)is a unit of S R(Q).

Theorem 4.4 Let Q be a quantale with e, a, b ∈ Q. We have

(i) If (a, b) ∈ R, then vR(a) = vR(b);

(ii) Let h : Q −→ P be a unital quantale homomorphism, such that (a, b) ∈ R =⇒ h(a) = h(b), there
exist an unital quantale homomorphism h : S R(Q) −→ P such that h ◦ vR = h and for all x ∈ S R(Q).

Proof. (i) If (a, b) ∈ R, then a = a&e&e ≤ vR(a). since vR(a) is saturated with R, we have vR(b) ≤ vR(a),
and by symmetry vR(a) = vR(b).
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(ii) Let h : Q −→ P be a untial quantale homomorphism such that (a, b) ∈ R =⇒ h(a) = h(b). Define
σ(x) =

∨{y ∈ Q | h(y) ≤ h(x)}, obviously x ≤ σ(x), andh ◦ σ(x) = h(x).

Let (a, b) ∈ R, c, d ∈ Q, and a&c&d ≤ σ(x), then h(b&c&d) = h(b)&h(c)&h(d) = h(a)&h(c)&h(d) =

h(a&c&d) ≤ h(σ(x)) = h(x), hence b&c&d ≤ σ(x). similarly, if b&c&d ≤ σ(x), then a&c&d ≤ σ(x), we
have a&c&d ≤ σ(x)⇐⇒ b&c&d ≤ σ(x).

If c&a&d ≤ σ(x), then h(c&b&d) = h(c)&h(b)&h(d) = h(c)&h(a)&h(d) = h(c&a&d) ≤ h(σ(x)) =

h(x). Hence c&b&d ≤ σ(x). similarly, if c&b&d ≤ σ(x), then c&a&d ≤ σ(x). Hence c&a&d ≤ σ(x)⇐⇒
c&b&d ≤ σ(x). Now, we can see that σ(x) is saturated with R.

Since x ≤ vR(x) ≤ σ(x) for all x ∈ Q, then h(x) ≤ (h◦vR)(x) ≤ (h◦σ)(x) = h(x), hence(h◦vR)(x) = h(x).
Define h = h |S R(Q), we can see that h is a unital quantale homomorphism such that h ◦ vR = h. Obviously,
h(s) = h(s) for all x ∈ S R(Q).

5. THE COPRODUCT OF THE CATEGORY OF UNITAL QUAN-
TALES

Let Quant denote the category of quantale and homomorphism, Quant be the category of unital quantales
and unital quantale homomorphism,

In [], if M is a monoid, the the power set P(M) is a quantake with a operator &.

Theorem 5.1 Let M be a monoid with unit e. Define: A&B = {a · b | a ∈ A, b ∈ B} for all A, B ∈ P(M),
then (P(M),&, {e}) is a unital quantale.

Let Mon denote the category of monoids with monoid homomorphism.

Define

P : Mon −→ UnQuant

M 7−→ P(M)

f : M −→ N 7−→ P( f ) : P(M) −→ P(N)

A 7−→ { f (a) | a ∈ A}
It is easy to prove that P : Mon −→ UnQuant is a functor.

Theorem 5.2[] Functor P : Mon −→ UnQuant is left adjoint to the forgetful functor U : UnQuant −→
Mon.

For the convenience of the following statements, the proof of Theorem 5.2 is simply described as fol-
lows.

Let M is a monoid, µ : M −→ P(M) such that for all x ∈ M. Obviously, the map µ is a monoid
homomorphism.

Assume that f : M −→ Q is a monoid homomorphism. Defined f : P(M) −→ Q such that f (A) =∨{ f (a) | a ∈ A} for all A ∈ P(M). It is easy to verify that f = f ◦ µ , i. e. the triangle commutes. The
uniqueness of f is immediate.

M P(M)
µ

f

Q

f

-

?

@
@

@
@R
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Next, we shall give coproduct of the category unital quantales based on the above discussions.

Let {Qi}i∈I be a family of nonempty unital quantales with
⋂
i∈I

Qi , ∅, by Theorem 4.1 and 4.2, we can

see that ((µi)i∈I , Π∗
i∈I

Qi) is the coproduct of the category of monid, and (P(Π∗
i∈I

Qi),&) is a unital quantale.

We define a mapping R = {((µ ◦ µi)(
∨
j∈J

x j),
∨
j∈J

(µ ◦ µi(x j))) | i ∈ I, {x j} j∈J ⊆ Qi} ⊆ P(Π∗
i∈I

Qi) × P(Π∗
i∈I

Qi) as

follows:

νR : P(Π∗
i∈I

Qi) −→ S R(P(Π∗
i∈I

Qi))

x 7−→
∧
{s ∈ S R(P(Π∗

i∈I
Qi) | x ≤ s}.

By theorem 3.2, we have that the map νR is a quantic nucleus, we use S R(P(Π∗
i∈I

Qi)) to denote the class of

all saturated elements ofP(Π∗
i∈I

Qi) with R, and S R(P(Π∗
i∈I

Qi)) is a quantic quotient of P(Π∗
i∈I

Qi) by the above

discussions.

The following theorem gives the concrete forms of the coproduct in UnQuant.

Theorem 5.3 Let {Qi}i∈I be a family of nonempty unital quantales with ∩
i∈I

Qi , ∅, then (li, S R(P(Π∗
i∈I

Qi))) is

a coproduct of {Qi}i∈I in UnQuant, where li = νR ◦µ◦µi, νR, µ, µi are some unital quantale homomorphism,
h is the monoid homomorphism obtained by theorem 2.1, h′ is the unital quantale homomrophism form
theroem 4.2.

Proof. (1) For all x, y ∈ Q, then li(x&iy) = (νR◦µ◦µi)(x&iy) = (νR◦µ)(x&iy) = νR({x&iy}) = νR({x}&{y}) =

νR({x})&νR({y}) = (νR ◦ µ)(x)&(νR ◦ µ)(y) = (νR ◦ µ ◦ µi)(x)&(νR ◦ µ ◦ µi)(y) = li(x)&li(y).

For all {xk}k∈K ⊆ Qi, Since ((µ ◦ µi)(
∨

k∈K
xk),

∨
k∈K

(µ ◦ µi(xk))) ∈ R, by theorem 3.4, we can see that

νR(µ ◦ µi)(
∨

k∈K

xk) = νR((
∨

k∈K

µ ◦ µi)(xk)).

Hence li(
∨

k∈K
xk) = (νR ◦ µ ◦ µi)(

∨
k∈K

xk) = νR((
∨

k∈K
µ ◦ µi)(xk)) =

∨
k∈K

((νR ◦ µ ◦ µi)(xk)) =
∨

k∈K
li(xk).

(3) Let ei be the unit of Qi, then li(ei) = νR ◦ µ ◦ µi(ei) = νR(µ(e∗)) = νR(e∗). By theorem 3.3(iii), we can
show that νR(e∗) be a unit on S R(P(Π∗i∈I Qi). Hence li preserves the unit element. By (1),(2),(3), we can see
that the mapping li is a unital quantale homomorphism.

By theorem 4.2, there is a unital quantale homomorphism h′ such that h′ ◦ µi = h for all i ∈ I.

Since h′(
∨

k∈K
µ◦µi(xk)) =

∨
k∈K

((h′◦µ◦µi)(xk)) =
∨

k∈K
((h◦µi)(xk)) =

∨
k∈K

gi(xk) = gi(
∨

k∈K
xk) = h◦µi(

∨
k∈K

xk) =

h′ ◦µ◦µi(
∨

k∈K
xk), and be theorem 3.4(i), we can see that there exist a unique unital quantale homomorphism

h′′ satisfy h′ = h′′ ◦ νR and h′′ ◦ li = h′′ ◦ (νR ◦ µ ◦ µi)
= h′ ◦ µ ◦ µi = h ◦ µi = gi.

Therefore (li, S R(P(Π∗
i∈I

Qi))) is a coproduct of {Qi}i∈I in UnQuant.

Qi

Q

gi

Π∗
i∈I

Qi
µi

h

Q
??

- P(Π∗
i∈I

Qi)

Q

µ

h′

-

?

S R(P(Π∗
i∈I

Qi)

Q

νR

h′′

-

?
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