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Abstract: In this paper pricing for vulnerable options is investigated. The discussed 
payoff function mainly derives from the Klein and the Ammann credit risk 
frameworks. Three stochastic processes, namely the underlying stock price, the asset 
value of the option writer, and the liability value of the option writer, are suitably 
modeled. Under the suggested payoff function, closed-form solutions for vulnerable 
European options are derived; moreover, adapting the Rubinstein’s approach, a 
general binomial pyramid algorithm for vulnerable options pricing is constructed. 
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1.  INTRODUCTION 
 

The study of options pricing subject to counterparty credit risk originated with Black and Scholes ]2[ , 

and Merton ]8[ , who took the first steps by investigating the credit risk models. Merton ]8[  developed an 
analytical framework, focusing on the case of defaulted debt instruments with a finite maturity date, 
assuming that the default might occur only at the expiration date. Hereafter, various methods for 
vulnerable options pricing were proposed; these can basically be divided into two categories: structural 
models and reduced-form models. In this paper, we will centralize attentions on the former models. 

The structural model approaches focused on the evolution of the firm value to determine the default 
and recovery rate. Most of these models assumed that the credit event is the consequence of a firm's 
default, and that the default time-point is typically specified as the first moment at which the firm's asset 
value reaches a specific threshold boundary. Major investigation within these firm value models is to 
characterize the evolution of the firm's value, as well as the firm's capital structure; related papers 

include those of Merton ]8[ , Johnson and Stulz ]4[ , Klein ]5[ , Klein and Inglis ]6[ , and Ammann ]1[ . 

Following the structural model approach, the goal of this paper is to price vulnerable options by 
considering three stochastic processes: the underlying stock price, and the asset value, and the liability 
value of the option writer. Under a specified payoff function, both analytical and numerical solutions are 
investigated. The rest of this paper is organized as follows. Section 2 reviews certain credit risk models. 
Section 3 presents the discussion of the payoff function and the corresponding closed-form solution for 
vulnerable European options. Section 4 develops the binomial pyramid numerical algorithm for pricing 
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vulnerable options. Finally, numerical evaluations are illustrated in Section 5, with Section 6 providing 
the conclusions of this paper.  

 

2.  REVIEW OF CREDIT RISK MODELS 
 

The following notations will be employed throughout the financial market models discussed: at time u , 

uS denotes the risky underlying stock price, uV  denotes the asset value, and uD denotes the liability 

value of the option writer; r denotes the constant riskless interest rate and K denotes the strike price of 
the option contract; t denotes the present time point and T denotes the maturity date of the option 

contract.  ,mN  denotes the m-variate normal distribution, with mean vector  and variance 

matrix , while  m denotes the standard normal cumulative distribution function.  

A continuous trading economy with trading interval ],[ Tt is considered. The discounted factor is 

given by 
 tTre 

 under the deterministic interest rates assumption. The financial market is assumed 
to be frictionless, arbitrage-free, and complete, so that all securities are perfectly divisible; there are no 
short-sale restrictions, transaction costs, or taxes. Furthermore, the stock pays no dividends during the 
period considered. 

The valuation model concerned with default risk on option writers was first proposed by Johnson and 

Stulz ]4[ , and assumes that the option itself is the only liability of the option writer. Without a 
consideration of deadweight costs, a payoff function for a vulnerable European call option is defined as:      
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where  aa ,0max  and  1 is an indicator function.              

Klein ]5[  modified this model by permitting the existence of other liability in the capital structure of 
the option writer, as well as by introducing the concept of deadweight costs into his credit risk model. 
The payoff function for a vulnerable European call option is thus defined as: 
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The parameter  , expressed as a percentage of the option writer's asset value with 10   , 
represents the deadweight costs associated with the default event. It includes the direct cost of 
bankruptcy of the reorganization process, as well as the indirect effects of distress on the business 

operations of the option writer. The parameter *D , a fixed default boundary, could be strictly less than 

TD  due to the possibility of continuing in operations even when TV  is less than TD . Both   and 

 *D are exogenously known constants. 

Later, a more comprehensive payoff function for a vulnerable European call option was introduced 

by Klein and Inglis ]6[  



Shu-Ing LIU; Yu-Chung LIU /Progress in Applied Mathematics Vol.1 No.2, 2011 

14 
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Nonetheless, with this Klein and Inglis ]6[  were not presenting a closed-form pricing formula, but 
were instead providing an approximating evaluation solution.  

Ammann ]1[ , on the other hand, developed the credit risk model of Johnson and Stulz ]4[  by extending 
the dynamic of the option writer's liability, TD , to become a stochastic process. The payoff function for 

a vulnerable European call option is then: 

      TDVDVTT TTTT
KSC 

  11 .                  (4) 

The recovery rate, T , itself follows a stochastic process, and can be exogenously estimated by 

using other econometric models. Meanwhile, a closed-form solution to the vulnerable European options 
(4) had been obtained. 

 

3.  THE PROPOSED PRICING MODEL 
 

In this section, a closed-form formula for proposed vulnerable European options will be derived. The 

stochastic processes of tS , tV  and tD  under a scheme analogous to the Black-Scholes model setting 

are assumed. The following stochastic differential equations are assumed:  
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where DVS    and  , ,  are constant drift coefficients; DVS    and  ,,  are constant diffusion 

coefficients; and )  ,,( D
u

V
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S
uu WWWW   is a three-dimensional Wiener process under the no-arbitrage 
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It follows that  TTT DVS ln,ln,ln  are normally distributed and denoted by 
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3.1  The Payoff Function 

Allowing for flexibility of the default ratio, as well as a consideration of deadweight costs, a payoff 
function for a vulnerable European call option is proposed, through modification of Ammann’s credit 
risk model, as: 
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Again, the parameter  represents the deadweight costs associated with the default event. The 

parameter *d , a constant default boundary ratio, could strictly speaking, be less than 1, due to the 

possibility of a firm continuing to operate, even when TV  is less than TD . Both   and *d are given in 

advance. The relationship between model (5) and the reviewed models in Section 2 are summarized as 
follows: 

1. If set  KSD TT  , 1* d , and 0 , then model (5) is reduced to the Johnson and 

Stulz ]4[  model presented by formula (1). 

2. If set tT DD   and tDDd **  , then model (5) is reduced to the Klein ]5[  model presented by 

formula (2). 

3. If set   *DKSD TT  and 1* d , then model (5) is reduced to the Klein and Inglis ]6[  

model presented by formula (3). 

4. If set 1* d , TTT DV , and 0 , then model (5) is reduced to the Ammann ]1[  model 

presented by formula (4). 

Therefore, the payoff function suggested in this paper is a generalized version of credit risk models 
that has been presented before. According to the Risk-Neutral Valuation Principle, the current 
time   t arbitrage price of the vulnerable European call option is the deflated expected value from 
time   T under the martingale measure Q . Thus the arbitrage pricing process, with the payoff provided 

by formula (5), is expressed as: 
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3.2  Closed-Form Formula for Vulnerable European Options 

To simplify the derivation of the closed-form solution to formula (6), algebraic calculation is required: 

Let 










110

001
A ,  TTT

T DVSX ln  ln  ln , and  TTT DV , which leads to 

               ,~ lnln,ln ln,ln 2

d

 NDVSSAX TTTTT ,              (7) 

where 
  
   






















2ln

2ln
22

2

DVt

StS

tT

rtTS










,   









2

2








SS

SSStT , 

DVVDDV  222   and     DSDVSVS  . 

Equations (5) and (6) can, thus, be respectively re-written as: 
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These pre-conditions lead to the following theorem. 

Theorem 1.  (Arbitrage Pricing of Vulnerable European Options) 

(a). The price of the stated vulnerable European call option at time t  can be given as: 
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(b). The price of the vulnerable European put option at time t  is given by 
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Proof: For the proof of (9), refer to Appendix A.      

A put-call parity for a vulnerable European option can be directly derived from results of Theorem 1, 
and describes the relationship between the value of a call option and a put option, with the same 
underlying asset value, exercise price and expiration date.  

Theorem 2. The resultant put-call parity for a vulnerable European option is: 
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The result of Theorem 2 implies that a long position of a vulnerable call option combined with a 

certain amount of cash,  tTrKe 
1 , is equivalent to a long position of a vulnerable put option plus a 

long position in a stock with the size of 2 . In other words, the payoff of the portfolio 
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C Ket  1  is equivalent to the payoff of the portfolio   tP St 2 , and each of the two 

portfolios can replicate the payoff pattern of the other. This provides a trading strategy to hedge each of 
the portfolios through position of the opposite option. 

The delta hedge ratio of a stock option is the ratio of the change in the option value with respect to the 
change in the underlying stock price. The results of Theorem 1 lead to the following delta hedge ratios 
for vulnerable European options. 

Theorem 3. The delta hedge ratio of a vulnerable European call (put) option is:  
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 For the standard Black-Scholes ]2[  European options, the associated delta hedge ratio for a call 

option is  11)( atBS
C  , while for a put option it is  11)( atBS

P  , with 1a  provided by 

Theorem 1. After algebraic calculation, the following corollary demonstrates the delta hedge ratio 
relationships between the standard Black-Scholes model and the discussed vulnerable model. 

Corollary 1.  The relationships between delta hedge ratios are: 
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4.  BINOMIAL PYRAMID (BP) ALGORITHM 
 

The numerical approach is especially useful for the pricing of American options. In this section, a pricing 
algorithm, derived through the construction of a joint bi-variate binomial lattice structure, called a BP 

algorithm, is discussed. Rubinstein ]9[  utilized a specified joint lattice structure with some equal 
transition probabilities to evaluate an option targeted on two risky underlying assets. In order to relax the 

equal probabilities assumptions, Ammann ]1[  imposed an independence assumption on the associated 
processes instead. A more general BP algorithm can be derived as follows. 

 

4.1  Construction of the Binomial Pyramid Algorithms 

Statement (7) can be represented as: 
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In order to model the correlated evolutions of S  and  , a correlated bi-variate binomial pyramid is 

constructed. Let the pair of initial values be represented by  tt S, ; four different states, after a certain 

length of time has passed, are:  uu S, ,  ud S, ,  dd S,  and  du S, , here 
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u uSS  ,  dt
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down-move) with a jump size of u )( d  and Su )( Sd , respectively. The corresponding restrictions 
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  with 14321  pppp ..   . (10) 
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To ensure that the convergence of the bi-variate binomial structure converges to the exact bi-variate 
normal distribution, and the recombining property, some defining equations are set up. Finally, 

 4321 ,,,,,,, ppppdudu SS  are solved through the following equations: 

     
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Here VDVV   2
 and VDDD   2

.  

Theorem 4.  The solution to the parameters, under the restriction of the equations in (11), is:  
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2 , and   nSDr   exp3 . 

Moreover, by ignoring higher order terms of n , approximations of u  and Su , expressed as 

 nu   exp  and  nSSu  exp , are respectively obtained. 

Proof: See Appendix B.   
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With the parameters derived from Theorem 4, the Binomial Pyramid (BP) algorithms can be 
developed. Assume that the initial values are given by t 0,0,0  and tSS 0,0,0 . Let the information 

vector at each lattice node be represented by 



  jimjimjimjim S ,,,,,, ,, ,, , for nkm 0 , and 

mji  ,0 , where  jimjimjim S ,,,,,, ,  is a function of jim ,,  and jimS ,, , 

depending on the assumption of the payoff function corresponding to the BP algorithm. According to the 
payoff function defined by (8), is given as: 
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for nkm 1 , and mji  ,0 . Assuming that there is no default event at the current time t , the 

initial intrinsic value is   KS 0,0,00,0,0 . 

After time passing, four lattice nodes, namely,  0,0,1 ,  0,1,1 ,  1,0,1 , and  1,1,1 , are expanded 

from the initial node  0,0,0 . The values of jiji S ,,1,,1  , and ji ,,1  are arranged in 
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Stji duSS      ,  , ,,1,,1,,1 jijiji S for 1,0  ji , 

with the transition probabilities lp given by equation (10). The special case of a two-step binomial 

pyramid, with  2  nkn , is demonstrated in Figure 1. The value of ji ,,1 , for 1,0  ji , is 

systematically constructed with the initial information vector ],,[ 0,0,00,0,00,0,00,0,0  S . After a 

second time step increase, the subsequent information vectors at layer 2 are forward derived. For 
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The general forward iterative procedure is given by: 
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for nkm 1 , and mji  ,0 . The initial value is   KSt0,0,0 . It is worth noting that the 

construction of the BP algorithm under discussion has the advantage that either the equal probabilities 

assumption of Rubinstein ]9[  or the independence assumption of Ammann ]1[  is relaxed, and that the 
associated eight parameters are well-defined and explicitly expressed in Theorem 4.             

 

 

Figure 1: Forward Construction for a Two-step BP Structure 
 

4.2  BP Algorithm for Pricing Vulnerable European Call Options  

Let jimF ,,  be the arbitrage value of the vulnerable European call option at the  jim ,,  node of the BP 

algorithm. Each center lattice induced from the associated four corner lattices, results in the following 
backward reduction steps: 

 jimjimjimjim
r

jim FpFpFpFpeF n
,1,14,,131,,121,1,11,, 

  ,   (13) 

for nkm 0 , and mji  ,0 , with initial conditions 

jikjik nn
F ,,,,  , for nkji   ,0 .            .     

Beginning with the initial values   n

n

k

jijikF
0,,, 

, and moving backward through every node of the BP 

tree, the arbitrage price of the vulnerable European call option at the current time point, 0,0,0F , is attained. 

The recursive procedure for the 2   nkn  special case, similar to Figure 1, with F replacing  , is 

summarized as follows: 

1. Derive information vectors ji ,,1 , for 1,0  ji , and then ji ,,2 , for 2,0  ji . 

2. Calculate intrinsic values ji ,,2  from equation (12). 

3. Obtain associated initial values jiF ,,2  from equation (12). 
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4. Repeat the backward processes of equation (13) in turn to derive jiF ,,1 : 

 1,2,241,1,232,1,222,2,211,1,1
2 FpFpFpFpeF r  

, 

 1,1,241,0,232,0,222,1,211,0,1
2 FpFpFpFpeF r  

, 

 0,2,240,1,231,1,221,2,210,1,1
2 FpFpFpFpeF r  

, 

 0,1,240,0,231,0,221,1,210,0,1
2 FpFpFpFpeF r  

. 

Finally, the current arbitrage price, 0,0,0F , is obtained: 

 0,1,140,0,131,0,121,1,110,0,0
2 FpFpFpFpeF r  

. 

Consider a special case in which the stock price and the asset-to-debt ratio are independent: the 
following relationships result: 
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By recursively using equation (13) under the assumption of independence, 4231 pppp  , 

Ammann ]1[  derived the following closed-form solution to vulnerable European call options:  
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where   nkjia , ajb  ,   jikc n , aid  , nkdcba  , and jim ,,  

is given by equation (12). A further assumption of 4/14321  pppp  results in 
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which can be easily solved if the payoff function jim ,,  is simple enough. 

The above mentioned BP algorithm can be easily extended to price vulnerable American call options 
by taking the earlier exercise into consideration. 

 

5.  NUMERICAL ILLUSTRATIONS 
 

A conditional binomial tree (CBT) algorithm for pricing European options has been proposed by Liu and 

Liu ]7[ . The CBT algorithm, essentially an extension of the CRR ]3[  model, has a dimension reduction 
effect. The CBT algorithm provides a rather simple and efficient technique by applying model (5), which 
calculates a one-dimensional normal cumulative distribution function (cdf) instead of a two-dimensional 
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cdf in equation (9), or constructs a one-dimensional binomial tree instead of a complicated BP tree. Also, 
the dimension reduction effect avoids computational error caused by a numerical integral of a bi-variate 
normal cdf. A sketch of the CBT algorithm is provided in Appendix C. Moreover, results of the CBT 
algorithm actually converge to those stated in Theorem 1. For further details, please refer to Liu and 

Liu ]7[ . 

Table 1: Relative Percentage Error (%) for Vulnerable European Put Options 

Case Algorithm 50n  100n  200n  500n  1000n  

Base Case 
CBT 

.B P  

0.5076 

0.3864 

0.2541 

0.3643 

0.1271 

0.1217 

0.0508 

0.0865 

0.0254 

0.0700 

50tS  
CBT 

.B P  

0.8272 

0.9367 

0.2697 

0.1704 

0.0942 

0.0989 

0.0611 

0.0292 

0.0164 

0.0235 

50K  
CBT 

.B P  

0.1228 

0.2571 

0.0397 

0.0810 

0.0139 

0.0199 

0.0092 

0.0098 

0.0025 

0.0062 

2t  
CBT 

.B P  

0.5049 

0.5049 

0.2551 

0.2551 

0.1276 

0.1276 

0.0511 

0.0511 

0.0256 

0.0256 

05.0r  
CBT 

.B P  

0.5245 

0.4036 

0.2626 

0.3723 

0.1314 

0.1259 

0.0526 

0.0881 

0.0263 

0.0707 

0.1S  
CBT 

.B P  

0.5030 

0.3789 

0.2516 

0.3643 

0.1257 

0.1202 

0.0501 

0.0866 

0.0249 

0.0705 

5.0V  
CBT 

.B P  

0.5110 

0.4074 

0.2559 

0.2164 

0.1280 

0.1174 

0.0513 

0.0189 

0.0256 

0.0443 

3.0D  
CBT 

.B P  

0.5094 

0.5027 

0.2551 

0.2520 

0.1276 

0.1277 

0.0511 

0.0533 

0.0256 

0.0237 

0SV  
CBT 

.B P  

0.5068 

0.4926 

0.2538 

0.2725 

0.1270 

0.1270 

0.0509 

0.0566 

0.0255 

0.0325 

0SD  
CBT 

.B P  

0.5096 

0.1669 

0.2552 

0.5734 

0.1277 

0.1155 

0.0512 

0.1540 

0.0256 

0.1529 

7.0VD  
CBT 

.B P  

0.5069 

0.6067 

0.2541 

0.2337 

0.1275 

0.0795 

0.0514 

0.0463 

0.0260 

0.0228 

1. Most calculations are under the Base Case unless otherwise noticed: For instance, the case of 

50tS , changes tS from 40 to 50, and keeps the remaining unchanged. 

2. The relative percentage error is computed by:   %100~  xxx , where x is calculated  
from the closed-form solution, and x~ is obtained by the designated numerical method.  
 

In this section, numerical examples with CBT and BP algorithms are demonstrated for vulnerable 

European put options. The period number nk is set as nkn  , and a set of parameters called the Base 

Case is given as: 40tS , 40K , 6tV , 5tD , 2.1 ttt DV , 95.0* d , 3.0 , 

02.0r , 25.0 tT , 6.0S , 3.0V , 5.0D , 4.0SV , 3.0SD , and 
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9.0VD . Certain of the parameters are decided by S&P500 historical market data in order to provide 

the scenario of a real financial market. 

Numerical comparisons with benchmark values derived from the closed-form solution given in 
Theorem 1 are provided in Table 1. The entries in Table 1 evaluate the relative percentage errors 
between the closed-form formula and the CBT algorithm, and between the closed-form formula and the 
BP algorithm, for the vulnerable European put option respectively. The period number n  ranges from 
50 to 1000, providing a demonstration of convergence patterns. In addition to the parameters of the Base 
Case, another ten numerical examples have also been provided by changing only one of the parameters. 

For instance, the case 50tS , changes tS  from 40 to 50, and keeps the remaining parameters 

unchanged. 

The relative percentage errors listed in Table 1 decrease almost monotonically as the period number 
increases. Most of the relative percentage errors are less than %5.0 when the period number is larger 
than 100, are less than 0.1% when the period number is over 200, and are less than 0.03% when the 
period number equals 1000. Numerical examinations verify that the CBT algorithm for vulnerable 
European options is rather accurate, and that the algorithm is significantly simpler. The constructed BP 
algorithm is appropriate for use with vulnerable American options. 

 

6.  CONCLUSIONS 
 

This paper discussed methods for pricing vulnerable options. Extending the Klein ]5[  and Ammann ]1[  
credit risk models, the proposed payoff function considers three correlated stochastic processes: the 
underlying stock price, the option writer's asset value and the option writer's liability value. A 
closed-form solution and analytical results were derived under the discussed payoff function. 
Furthermore, the Binomial Pyramid (BP) algorithms were constructed as discrete time approximating 
procedures.  
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APPENDIX A 

Proof of formula (9) 

Before proving Theorem 1, some preliminary results are presented without proof as follows: 
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Proof of Theorem 1.  
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Theorem 2 follows by applying A5 to Theorem 1. By partial differentiating upon the results of 
Theorem 1 with respect to tS , together with A6, the result of Theorem 3 follows.  

            

APPENDIX B 

Proof of Theorem 4. 

 For convenience, the system of simultaneous equation (11) is re-numbered as follows: 
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    Rearranging equations (b.1) leads to  4321 1 pppp   and substituting this into  4.b  

results in  
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Similarly, results of equations (b.1) and (b.5), lead to  
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APPENDIX C 
Sketch of the CBT algorithm 

The time interval ],[ Tt is divided into nk subintervals of equal length n , with 

.)( nn ktT  Trading is supposed to occur at equidistant time points ,, nni itt   for 

.,,2,1,0 nki  The j-th node at time   ,nit is referred to as the   , ji node, and the stock price at 

the   , ji node is                  
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   nnnnn dudrp  ,   1exp  nn rr , nnn urd  , and r is the risk-free interest rate.  

Applying the double expectation property of bi-variate normal distribution, equation (5) is 
re-expressed as: 
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From statement (7), the conditional distribution of Tln , given jkT n
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Let jif ,  be the arbitrage value of the vulnerable European call option at the   , ji node, then 

                 jinjinnji fpfprf ,11,1, 1exp   ,  for nkij 0 ,          

with initial conditions jkjk nn
f ,,  , for nkj 0 . Here                 
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Beginning from initial values   n

n

k

jjkf
0, 

, and moving backward throughout every node of the 

binomial lattice, the arbitrage price of the vulnerable European call option at the current time point, is 

determined to be 0,0f .  


