Progress In Applied Mathematics ISSN 1325-251X [Print]
Vol. 1, No. 2, 2001, pp. 12-29 ISSN 1925-2528 [Online]

www.cscanada.net www.cscanada.org

Pricing Vulnerable Options under Stochastic Asset
and Liability

Shu-Ing LI1U*
Yu-Chung LIU?

Abstract: In this paper pricing for vulnerable options is investigated. The discussed
payoff function mainly derives from the Klein and the Ammann credit risk
frameworks. Three stochastic processes, namely the underlying stock price, the asset
value of the option writer, and the liability value of the option writer, are suitably
modeled. Under the suggested payoff function, closed-form solutions for vulnerable
European options are derived; moreover, adapting the Rubinstein’s approach, a
general binomial pyramid algorithm for vulnerable options pricing is constructed.
Key words: Credit Risk; Vulnerable Option Pricing; Binomial Pyramid Algorithm

1. INTRODUCTION

The study of options pricing subject to counterparty credit risk originated with Black and Scholes[z],

and Merton & , who took the first steps by investigating the credit risk models. Merton ! developed an
analytical framework, focusing on the case of defaulted debt instruments with a finite maturity date,
assuming that the default might occur only at the expiration date. Hereafter, various methods for
vulnerable options pricing were proposed; these can basically be divided into two categories: structural
models and reduced-form models. In this paper, we will centralize attentions on the former models.

The structural model approaches focused on the evolution of the firm value to determine the default
and recovery rate. Most of these models assumed that the credit event is the consequence of a firm's
default, and that the default time-point is typically specified as the first moment at which the firm's asset
value reaches a specific threshold boundary. Major investigation within these firm value models is to
characterize the evolution of the firm's value, as well as the firm's capital structure; related papers

include those of Merton™ , Johnson and Stulz!*! : Klein , Klein and Inglis[sl, and Ammann™ .

Following the structural model approach, the goal of this paper is to price vulnerable options by
considering three stochastic processes: the underlying stock price, and the asset value, and the liability
value of the option writer. Under a specified payoff function, both analytical and numerical solutions are
investigated. The rest of this paper is organized as follows. Section 2 reviews certain credit risk models.
Section 3 presents the discussion of the payoff function and the corresponding closed-form solution for
vulnerable European options. Section 4 develops the binomial pyramid numerical algorithm for pricing
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2 Master, Department of Mathematics, National Taiwan University.
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vulnerable options. Finally, numerical evaluations are illustrated in Section 5, with Section 6 providing
the conclusions of this paper.

2. REVIEW OF CREDIT RISK MODELS

The following notations will be employed throughout the financial market models discussed: at time U,
S, denotes the risky underlying stock price, V, denotes the asset value, and D, denotes the liability

value of the option writer; I' denotes the constant riskless interest rate and K denotes the strike price of
the option contract; t denotes the present time point and T denotes the maturity date of the option

contract. Nm(,U,A) denotes the m-variate normal distribution, with mean vector £ and variance

matrix A, while D m () denotes the standard normal cumulative distribution function.

A continuous trading economy with trading interval [t, T] is considered. The discounted factor is

(T-t)

. -r o . . . .
given by € under the deterministic interest rates assumption. The financial market is assumed
to be frictionless, arbitrage-free, and complete, so that all securities are perfectly divisible; there are no
short-sale restrictions, transaction costs, or taxes. Furthermore, the stock pays no dividends during the
period considered.
The valuation model concerned with default risk on option writers was first proposed by Johnson and

Stulz™ | and assumes that the option itself is the only liability of the option writer. Without a
consideration of deadweight costs, a payoff function for a vulnerable European call option is defined as:

C; = (ST - K)+ ' l{VT >S; -K +1{VT<ST—K} ( 1)

S, -K)|'
where a* = max{O, a} and l{_} is an indicator function.

Klein™ modified this model by permitting the existence of other liability in the capital structure of
the option writer, as well as by introducing the concept of deadweight costs into his credit risk model.
The payoff function for a vulnerable European call option is thus defined as:

. l-o
CT :(ST _K) ) 1{\/T2D*}+l{\/T<D*}( D)\/T . 2)
t

The parameter « , expressed as a percentage of the option writer's asset value with 0 < <1,
represents the deadweight costs associated with the default event. It includes the direct cost of
bankruptcy of the reorganization process, as well as the indirect effects of distress on the business

operations of the option writer. The parameter D", a fixed default boundary, could be strictly less than
D; due to the possibility of continuing in operations even when V; is less than D, . Both o and

D" are exogenously known constants.

Later, a more comprehensive payoff function for a vulnerable European call option was introduced
by Klein and Inglis®
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+ (l_ a)\/T
G = (ST - K) : l{\/TZST—K+D*}+1{\/T<ST—K+D*} (ST _ K)—I— D" | 3

Nonetheless, with this Klein and Inglis 81 \were not presenting a closed-form pricing formula, but

were instead providing an approximating evaluation solution.
Ammann ™ , on the other hand, developed the credit risk model of Johnson and Stulz 4l by extending
the dynamic of the option writer's liability, D, , to become a stochastic process. The payoff function for

a vulnerable European call option is then:

n
G = (ST - K) '[1{VT2DT}+1{VT<DT}§T]'
The recovery rate, O , itself follows a stochastic process, and can be exogenously estimated by
using other econometric models. Meanwhile, a closed-form solution to the vulnerable European options

(4)

(4) had been obtained.

3. THE PROPOSED PRICING MODEL

In this section, a closed-form formula for proposed vulnerable European options will be derived. The
stochastic processes of S, , V, and D, under a scheme analogous to the Black-Scholes model setting

are assumed. The following stochastic differential equations are assumed:

dSS” = (,usdu +o dW? )

u
dv
V” :(,uvdu+0'vquV), for uelt,T],
u
dD
4= (,uDdu + O'DquD)
DU
where g, 14,, and i are constant drift coefficients; oy, 0, and oy, are constant diffusion

coefficients; and W, = (WuS WY, WUD) is a three-dimensional Wiener process under the no-arbitrage
martingale measure Q, satisfying EQ(WUX ): 0 for X €{S,V,D} and EQ(WUX W ): UDyy

Oy = PyyTy0y for X,Y €{S,V,D}.
It follows that (In S;,InV;,In D, ) are normally distributed and denoted by

(InS;,InV;,InD;) : N, (i, A),

with mean vector £, and covariance matrix A , given respectively by
Ins, +(r—o2/2)T -t)

u=|InV, +(r—0'\f/2XT ~t) |, and A = (T —t)| oy,
InD, +(r—0'é/2XT ~t) oy Ow Op

2
Os Ogy Ogp
2
Oy Oyp
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3.1 The Payoff Function

Allowing for flexibility of the default ratio, as well as a consideration of deadweight costs, a payoff
function for a vulnerable European call option is proposed, through modification of Ammann’s credit
risk model, as:

(s, —K) Jif S, —K >0 and \é—Tzd*
T
C, = (ST—K)-(l—a)V—T , if S, —K >0 and Viog
D, D,
0 if S, —K <0
V.
=(S, -K) |1 +(1-a)L-

Again, the parameter « represents the deadweight costs associated with the default event. The
parameter d”, a constant default boundary ratio, could strictly speaking, be less than 1, due to the

possibility of a firm continuing to operate, even when V; islessthan D; . Both « and d”are givenin

advance. The relationship between model (5) and the reviewed models in Section 2 are summarized as
follows:

1 1fset D; =(S; —K), d" =1, and @ =0, then model (5) is reduced to the Johnson and

stulz! model presented by formula (1).

2.1fset D; =D, and d" = D*/Dt , then model (5) iis reduced to the Klein™ model presented by
formula (2).

3. 1fset D; =(S; —K)+D"and d” =1, then model (5) is reduced to the Klein and Inglis"
model presented by formula (3).

4.1Fset d” =1, 6, =V; /D, ,and a =0, then model (5) is reduced to the Ammann™ model
presented by formula (4).

Therefore, the payoff function suggested in this paper is a generalized version of credit risk models
that has been presented before. According to the Risk-Neutral Valuation Principle, the current
time t arbitrage price of the vulnerable European call option is the deflated expected value from

time T under the martingale measure Q . Thus the arbitrage pricing process, with the payoff provided
by formula (5), is expressed as:

Hc (t) — e—r(T—t) . EtQ (ST - K)+ . l{VT >d*} + (l— a).l{wd*} D_ ®
= T
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3.2 Closed-Form Formula for Vulnerable European Options
To simplify the derivation of the closed-form solution to formula (6), algebraic calculation is required:

10 O T ,
Let A= , X" =[InS; InV; InD;],and &, =V, /D, ,which leads to

01
X =(InS;,In&.)=(InS;,InV; —InD )iNZ(,u*,Z), @
w) [ Ins,+(T —t)(r—as/z)} { ol psgasag}
here 11, = T -t ,
e [ﬂ(sj [Iné‘ ( )(Uv —Op )/2 ( Pss0s0s (7;

:\/0'\3 +O't2) —2p,p0y0p and Pss = (psvo'v ~—PspOp )/0-5 :

Equations (5) and (6) can, thus, be respectively re-written as:

A A,

T

M (t)=e (TtEQ{(S ~K)"- (1{5 ot +1-a)o, 1, <d*}ﬂ'
These pre-conditions lead to the following theorem.

Theorem 1. (Arbitrage Pricing of Vulnerable European Options)
(a). The price of the stated vulnerable European call option at time t can be given as:

Hc(t):Stq)z(alvaz;Psa) Ke " (b11b21p35)

+S,(1-a)s, exp{(o'sa +0p —Oyp XT - t)}q)z(cl’ Coi=Ps;)

- K(l—a)ét eXp{(@g —Oyp — I’XT _t)}q)z(dlvdz;_psg), ©)

In(S,/K)+(r+o2/2)T -t) a (5, /d")- (62 — 0% — 205, T —1)/2

h = =
HIETE & o VT —t ’ 0'5\/T—t
b=a,—-ovT -t | b,=a,—p,0NT -t | C =8 +ps;05VT —t
a,—oT —t,d, =b+p;0,vT =t anad, =—h, —o; VT -t

(b). The price of the vulnerable European put option at time t is given by

T, (t) = _StCDZ(_ a,,a, ;_p55)+ Ke_r(T_t)q)z(_ b, b, ;_p55)

- (1_ a)sté‘t exp{(ass + Gg —Owp XT - t)}q)z(_ Cp Cz;ps5)
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K-l exp{(a; I —t)}d)z(—dl,dz; o),

with the payoff function defined by PT = (K - ST )+ : [1{&} zd*} + (1_ a)é‘T 'l{(gT <d*}]-

Proof: For the proof of (9), refer to Appendix A.

A put-call parity for a vulnerable European option can be directly derived from results of Theorem 1,
and describes the relationship between the value of a call option and a put option, with the same
underlying asset value, exercise price and expiration date.

Theorem 2. The resultant put-call parity for a vulnerable European option is:

I (t)+6,Ke ™™V =11, (t)+6,S,
where 8, = @, (b, )+ (1—a)s, exp{(aé —Oyp )(T —t)}d)l(dz), and
0, = ®,(a,)+(L-a)s, eXp{(Usa‘ +0p —0yp )(T _t)}cbl(CZ)'

The result of Theorem 2 implies that a long position of a vulnerable call option combined with a
certain amount of cash, HlKe"'(T‘t), is equivalent to a long position of a vulnerable put option plus a
long position in a stock with the size of &, . In other words, the payoff of the portfolio

I, (t)+ HlKe’r(T’t) is equivalent to the payoff of the portfolio Hp(t)—i- 6,5, , and each of the two

portfolios can replicate the payoff pattern of the other. This provides a trading strategy to hedge each of
the portfolios through position of the opposite option.

The delta hedge ratio of a stock option is the ratio of the change in the option value with respect to the
change in the underlying stock price. The results of Theorem 1 lead to the following delta hedge ratios
for vulnerable European options.

Theorem 3. The delta hedge ratio of a vulnerable European call (put) option is:

Ol (t
Ac(t)=a—§()=CDZ(al,ag;p55)+(1—0!)Tt5tCD2(Cl,CZ;—pS§)>0,
t
oI, (t
Ap(t):#():_(DZ(_al’az;_pso‘)_(l_a)7t5t®2(_01702;p55)<Ov
t

where 7, = €Xp {(055 +ol -0y XT - t)}

For the standard Black-Scholes!'? European options, the associated delta hedge ratio for a call
option is A% (t) = ®,(a, ), while for a put option it is A% (t) = —®,(—a, ), with a, provided by

Theorem 1. After algebraic calculation, the following corollary demonstrates the delta hedge ratio
relationships between the standard Black-Scholes model and the discussed vulnerable model.

Corollary 1. The relationships between delta hedge ratios are:
As () - AT (1) = _q)z(ai’_az ;_psa)"‘ (1_ a)Tt5t®2(Cl’ C, ;_psa)v and
Ap(t) - A7 (1) = @2(— &,—8,, :035)_ (1_ a)z-tétq)Z(_ C1:Cas Pss )

17



Shu-Ing LIU; Yu-Chung LIU /Progress in Applied Mathematics VVol.1 No.2, 2011

4. BINOMIAL PYRAMID (BP) ALGORITHM

The numerical approach is especially useful for the pricing of American options. In this section, a pricing
algorithm, derived through the construction of a joint bi-variate binomial lattice structure, called a BP

algorithm, is discussed. Rubinstein ™ utilized a specified joint lattice structure with some equal
transition probabilities to evaluate an option targeted on two risky underlying assets. In order to relax the

equal probabilities assumptions, Ammann ™ imposed an independence assumption on the associated
processes instead. A more general BP algorithm can be derived as follows.

4.1 Construction of the Binomial Pyramid Algorithms
Statement (7) can be represented as:

d
(|I’l St+An , In5t+An ) = NZ(,u;,,Lz;,O'SZAn,O'EAn,pw),
where s =InS, + (r —GSZ/Z)An s =1Ind, —(O'\f —O'E)AH/Z. In other words,

Sea, =S, exp{(r ~o? /Z)An + oW, }

5t+An =6, exp{_ (0\3 - O_é )An /2 + GawAi }

Here W = (VVAS ,W5 ) is a two-dimensional Wiener process under the measure Q, satisfying
S 5
EQWS )= W, )=0 s ECWS W, )= pg,A,.

In order to model the correlated evolutions of S and &, a correlated bi-variate binomial pyramid is
constructed. Let the pair of initial values be represented by (5t 'S, ); four different states, after a certain

length of time has passed, are: ( U,Su), (50',8“), (5d,8d) and (5U,Sd), here
' =6U;,S"=SUs 5% =6,d;and S® =S.dg, while 5" (%) and " (S?)

denote the values of the asset-to-debt ratio and the underlying stock price after an up-move (or
down-move) with a jump size of U; (d;) and Ug (ds), respectively. The corresponding restrictions

for the no arbitrage assumption are 0 <d; <l<uy; and 0<dg <1<Ug. The four associated
probabilities for the distinct states are defined as:

ple(é‘HA =0, St+A =S" ‘é‘t’st)’
, = Q6. =550, =5"]8.5,),
s.)
s.)

with p,+p, +p;+p, =1. (10

p, =Q(5,., =5%5,., —S"\ S,
a, =08, =86,

2

I
Q
=)

t+A, t !

18



Shu-Ing LIU; Yu-Chung LIU /Progress in Applied Mathematics VVol.1 No.2, 2011

To ensure that the convergence of the bi-variate binomial structure converges to the exact bi-variate
normal distribution, and the recombining property, some defining equations are set up. Finally,

(uﬁ,dﬁ,us,ds, P.s Py Pas p4) are solved through the following equations:

p1+p2+p3+p4:1’

usds =1,

usds =

Us (P, + P, )+ds(ps + p,) =expira, |},

Ug(pl+p4)+d5(p +p3) EXp{_(O-\f_Gé_Gaz)An/z}’ (11)
W2(p, + p,)+d2(ps + p,) = expf2r + o2 ), |,

2

u3(p, + p,)+di(p, + ps)=expllay, +3a,)A, 1,
ususpl"‘usdapz+dsd5p3+dsu5p4ZEXp{(r"‘aD"‘Gsa) }

_ 2 _ 2
Here &, = 0, —Oyp and & = O — O\p.

Theorem 4. The solution to the parameters, under the restriction of the equations in (11), is:

0, =3 | oot ool + 2201,

+Jexp(=2a,A, )+ exp{2(ay, +2a, A, 1+ 2explo?A, )- 4} ,

0, =3 ot eempl - o2 bl ) ol o2 [ |

dsus =1 dgug =1, p,=1-4,-p,, p,=A4, ~A+p, and P;=4 — Py,

/13 UsUs — (daus _ua‘us)_ii(da‘ds _daus)

usds —ugzug —dsdg +dug

where

uS _exp(rAn) - Us _exp(aDAn)
, =

/11: us_ds l U(s_ds

Jand A, = exp{(r + ap, + o, A, }.

Moreover, by ignoring higher order terms of A, approximations of Us and Ug, expressed as

U; = eXp(O'“/An ) and Ug = exp(as VA, ) are respectively obtained.

Proof: See Appendix B.
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With the parameters derived from Theorem 4, the Binomial Pyramid (BP) algorithms can be
developed. Assume that the initial values are given by 6,,, =0, and S, ,, =S, . Let the information

vector at each lattice node be represented by ®m,i,j = {@n,i,j,sm,i,j ,Fm,i,j} , for 0<m< kn , and

0<i,J<m , where l—‘m‘i,j :F(am,i,jlsm,i,j) is a function of 5m,i,j and Sm,i,j ,

depending on the assumption of the payoff function corresponding to the BP algorithm. According to the
payoff function defined by (8), is given as:

l_‘m,i,j :r(gm,i,j’sml J) ( mij K)+ l: (1 a)5m,i,j .1{5m,i,'<d*}:|'

mlj

for 1I<m<k,,and 0<i, j <m. Assuming that there is no default event at the current time t, the
initial intrinsic value is Ty, , = (So,o,o - K)+ :

After time passing, four lattice nodes, namely, (10 0) (11,0), (101) and (1,1,1), are expanded
from the initial node (0,0,0). The values of &,..,S and T

Li,j° Li,j

order: &, =§t-(u5)'(d5)17', Siij =St-( ) (d )1 ' 0 —F( v i, J) for 0<i, j<1,
with the transition probabilities{pI }given by equation (10). The special case of a two-step binomial

i are arranged in

pyramid, with kn =n=2, is demonstrated in Figure 1. The value of Q,,,, for 0<i,j<1,is

systematically constructed with the initial information vector @, =[50+ 50,0,0:10,00]- After a
second time step increase, the subsequent information vectors at layer 2 are forward derived. For

instance, ©,,, = [50'0'0(% Y. So00(Us f ,F(é'oyoyo(uﬁ)z, So00(Us )} with probability p?.

The general forward iterative procedure is given by:
( - -
i m—i
5m,i,j —5t'(u5)(d5) '
Snii =S, (ug) (dg)™
L= ,

1_‘m,i,j ( mlj_K)*

with the transition probabilities

P = Q(5t+mAn = O (m-1)a,Us » Stema, = Sti(m-1)a,Us ‘ Ot (m-1)a, St+(m—1)An) ’
P, = Q(é‘terAn = 5t+ (m-1)A d St+mA = St+(m—1)AnuS ‘ 5t+(m—1)An J StJr(mfl)An J
P; = Q(é‘umA = 5t+ (m-1)A d§ ’St+mA - St+(m 1A, ‘ 5t+ (m-1)A, ’St+(m—1)An J
P, :Q(é‘HmA - é‘t+(m 1)A nu§ ’St+mA - t+ m-1)A ‘ t+(m-1)A, t+(m—1)An d

N

(12)
(1—0‘)5m,i,j '1{5m,i,,.<d*}]

_d
L mlj
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for I<m<k_ ,and 0<i, j<m. The initial valueis Ty, , = (S, — K)". It is worth noting that the
construction of the BP algorithm under discussion has the advantage that either the equal probabilities

assumption of Rubinstein® or the independence assumption of Ammann™ is relaxed, and that the
associated eight parameters are well-defined and explicitly expressed in Theorem 4.

Figure 1: Forward Construction for a Two-step BP Structure

4.2 BP Algorithm for Pricing Vulnerable European Call Options

Let F_, be the arbitrage value of the vulnerable European call option at the (m,i, j) node of the BP

algorithm. Each center lattice induced from the associated four corner lattices, results in the following
backward reduction steps:

—TA,
Fm,i,j =€ (plFm+l,i+l,j+l + P, Fm+1,i,j+1 + psFm+1,i,j + P, Fm+1,i+1,j ) (13)

for 0<m<Kk,, and 0<i, j <m, with initial conditions

F :rkn,i,j,for OSi,jSkn_

nols

Beginning with the initial values {Fkn'i'j }i Tio , and moving backward through every node of the BP
tree, the arbitrage price of the vulnerable European call option at the current time point, FOYO’0 , is attained.

The recursive procedure for the kn =n =2 special case, similar to Figure 1, with F replacing ®, is
summarized as follows:

1. Derive information vectors @, ;, for 0<i, j<1,andthen ® for 0<i, j<2.

2,i,j1

2. Calculate intrinsic values I',; ; from equation (12).

3. Obtain associated initial values F,; . from equation (12).
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4. Repeat the backward processes of equation (13) in turn to derive F,; ;:
I:1,1,1 =e ™ (ple,z,z + P, F2,1,2 + p3F2,1,1 + Py Fz,z,l):
I:1,0,1 = eirAz(ple,l,z + P, Fz,o,z + p3F2,o,1 + P, I:2,1,1):
Fiio= e_mz(ple,z,l + P,Foas + PsFon + p4F2,2,o)’
I:1,0,0 =e ™ (pl F2,1,1 + P, Fz,o,l + P I:2,0,0 + Py F2,1,0)-
Finally, the current arbitrage price, Fo,o,o , IS obtained:

Fooo = e " (p1F1,1,1 + PyFio1 + PsFioo + Py F1,1,0)-

Consider a special case in which the stock price and the asset-to-debt ratio are independent: the
following relationships result:

P -P; = Q( t+A —§U,St+An =3’ ts t)'Q(é‘HAn :5d’St+An =8¢ ‘ é‘t’st)
=Ql6.s, =6".Sus, =5°]6.5,) Q6. =6.5,,,, =5[8.5,)= P, P,

By recursively using equation (13) under the assumption of independence, P,P; = P, P, .

Ammann™ derived the following closed-form solution to vulnerable European call options:

Ky Ky
r(T-t) n apbcd
11, (t) Z (PP Ps P L
i=0 j=0
wherea=(i+ j-k, )" .b=j-a, c=(k,~i-j), d=i-a,a+b+c+d=k,, and T,

is given by equation (12). A further assumption of p, = p, = p; = P, =1/4 results in

m,(t)=e"" () ZZ Fkn,i,j ,

i=0 j=0

which can be easily solved if the payoff function mei'j is simple enough.

The above mentioned BP algorithm can be easily extended to price vulnerable American call options
by taking the earlier exercise into consideration.

5. NUMERICAL ILLUSTRATIONS

A conditional binomial tree (CBT) algorithm for pricing European options has been proposed by Liu and

Liut. The CBT algorithm, essentially an extension of the CRR model, has a dimension reduction
effect. The CBT algorithm provides a rather simple and efficient technique by applying model (5), which
calculates a one-dimensional normal cumulative distribution function (cdf) instead of a two-dimensional
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cdf in equation (9), or constructs a one-dimensional binomial tree instead of a complicated BP tree. Also,
the dimension reduction effect avoids computational error caused by a numerical integral of a bi-variate
normal cdf. A sketch of the CBT algorithm is provided in Appendix C. Moreover, results of the CBT
algorithm actually converge to those stated in Theorem 1. For further details, please refer to Liu and

Liul™,

Table 1: Relative Percentage Error (%) for Vulnerable European Put Options

Case Algorithm n=250 n=100 n=200 n =500 n=1000
Base Case CBT 0.5076 0.2541 0.1271 0.0508 0.0254
BP 0.3864 0.3643 0.1217 0.0865 0.0700

CBT 0.8272 0.2697 0.0942 0.0611 0.0164

S =50 BP 0.9367 0.1704 0.0989 0.0292 0.0235
K =50 CBT 0.1228 0.0397 0.0139 0.0092 0.0025
BP 0.2571 0.0810 0.0199 0.0098 0.0062

CBT 0.5049 0.2551 0.1276 0.0511 0.0256

=2 BP 0.5049 0.2551 0.1276 0.0511 0.0256
F =005 CBT 0.5245 0.2626 0.1314 0.0526 0.0263
BP 0.4036 0.3723 0.1259 0.0881 0.0707

CBT 0.5030 0.2516 0.1257 0.0501 0.0249

os =10 BP 0.3789 0.3643 0.1202 0.0866 0.0705
CBT 0.5110 0.2559 0.1280 0.0513 0.0256

oy =05 BP 0.4074 0.2164 0.1174 0.0189 0.0443
CBT 0.5094 0.2551 0.1276 0.0511 0.0256

op =03 BP 0.5027 0.2520 0.1277 0.0533 0.0237
CBT 0.5068 0.2538 0.1270 0.0509 0.0255

Py =0 BP 0.4926 0.2725 0.1270 0.0566 0.0325
CBT 0.5096 0.2552 0.1277 0.0512 0.0256

Po =0 BP 0.1669 0.5734 0.1155 0.1540 0.1529
CBT 0.5069 0.2541 0.1275 0.0514 0.0260

Ao =07 BP 0.6067 0.2337 0.0795 0.0463 0.0228

1. Most calculations are under the Base Case unless otherwise noticed: For instance, the case of
S, =50, changes S, from 40 to 50, and keeps the remaining unchanged.

2. The relative percentage error is computed by: (IX - x|/x)><100%, where X is calculated
from the closed-form solution, and X is obtained by the designated numerical method.

In this section, numerical examples with CBT and BP algorithms are demonstrated for vulnerable
European put options. The period number K issetas K, =N, and a set of parameters called the Base
Case is given as: S, =40, K=40,V,=6, D, =5, 5,=V,/D, =12, d =0.95, « =0.3,
r=002,T-t=025, 0,=06, 0,=03, 0,=05, p,, =04, p, =03, and
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Pvp = 0.9. Certain of the parameters are decided by S&P500 historical market data in order to provide
the scenario of a real financial market.

Numerical comparisons with benchmark values derived from the closed-form solution given in
Theorem 1 are provided in Table 1. The entries in Table 1 evaluate the relative percentage errors
between the closed-form formula and the CBT algorithm, and between the closed-form formula and the
BP algorithm, for the vulnerable European put option respectively. The period number N ranges from
50 to 1000, providing a demonstration of convergence patterns. In addition to the parameters of the Base
Case, another ten numerical examples have also been provided by changing only one of the parameters.

For instance, the case S, =50, changes S, from 40 to 50, and keeps the remaining parameters
unchanged.

The relative percentage errors listed in Table 1 decrease almost monotonically as the period number
increases. Most of the relative percentage errors are less than 0.5% when the period number is larger
than 100, are less than 0.1% when the period number is over 200, and are less than 0.03% when the
period number equals 1000. Numerical examinations verify that the CBT algorithm for vulnerable

European options is rather accurate, and that the algorithm is significantly simpler. The constructed BP
algorithm is appropriate for use with vulnerable American options.

6. CONCLUSIONS

This paper discussed methods for pricing vulnerable options. Extending the Klein®™ and Ammann™
credit risk models, the proposed payoff function considers three correlated stochastic processes: the
underlying stock price, the option writer's asset value and the option writer's liability value. A
closed-form solution and analytical results were derived under the discussed payoff function.
Furthermore, the Binomial Pyramid (BP) algorithms were constructed as discrete time approximating
procedures.
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APPENDIX A

Proof of formula (9)
Before proving Theorem 1, some preliminary results are presented without proof as follows:

AL IS L~ N(a(S)p) . wnere  als)= u, +py, Z(Ins— i)
Oy
=Ins,—(T - )(O'V O'D)/Z , yszlnSt+(r—a§/2XT—t) and

ﬂ=0'5\/(1—,055XT _t)-

. 1
A2 Let @,(x,y; p)= —zexp[—
2r\1-p

(x> =2y + yz)}
2(1—p2) ’

X Yy 2
(DZ(X, yi,O) = J. J.(oz(u,v;p)dvdu, and ¢, (x) :%exp[— X?] then for any standard

—00 —00

normal random variable Y ,

L i@[%}mz)dz = @, (% y:p).

2. E{exp(aY) Ly @ [%}}:exp(%z)@z(a y,b+ pa; p).

A3. EtQ[l{ |S —S] @[MJ wherez—ls—ﬂs.

\/1—,0 osNT —t
Ad. EQ[5 15 )5 S]UtEXp{Zpsao'(s\/T——t}CDl{dz_psg(z_pwo—()‘\/-r—_t)},

\/1—0525
where Zz—lns_‘ S and 7, = O, Xp (0'2 —Oyp — PosO /ZXT—t
X IT_t t t D VD So~ o

A5, @, (X, y;0)=D,(y) =D, (=X, y;=p) and D, (x, y; p)= B, (x) - @, (x,~y;=p).
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A6. 1. S, aq)Z(al'aZ;psa‘) Ke™" T 8®2(b1,b2;p55)

o, b,
2. SteasJ(T—t) 6@2(011 Cz;_pSJ) — Ke—r(T_t) GCDZ(dl, dz;_psg)
oc, ad,
3 da _ b _dc _ ad, 1

138, 8S, 05, 05, ST -t

Proof of Theorem 1.

Decompose T, (t) as, I, (t)=e""EQ[C, | =11, -1, + I1, — I, where
I, = e . EtQ{ST Lsaxy E (1{5T>d*}|ST )}

I, = Ke"". E2 [1{ST2K} E7 (:I'{ér>d*}|ST )}

IT, = (1— a)eir(Tit) ) EtQ|:ST 1{ST2K}' EtQ (§T 1{5T<d*}|ST )jl ' and

I, = K(l_a)e—r(T—t) EQ [1{ST2K} EQ (5T 1{5r<d*}|ST )} .

InS, — . . .
Let Z, = 21 245 5 standardized normal random variable. By using A2-A 4, then
oNT —

\ll_psis

T b+ p..Z (T
I1, = Ke “ t)EtQ 1{ZT>b1}'q)1£—j/p%2T] =ke™ t)(I)Z(bl’bz;losﬁ)'
1-pss

I, = (1_ a)ﬂte_r(T_t)EtQ {eXp[ZT (Gs +p350'§)vT —t+ ,Us]'l{zT >b1}q)1[d2 _Pss(ZT mizall t)]}

\/1_,0525

e o STEs b, + pssZ _
I, =e"" t)EtQ{eZT T 1{ZT>Q}®1£¢J] = Stq)Z(al'aZ’pS&)'

= (1_ a)Sté't EXP{(O'so" +0p — Oyp XT _t)}q)z(clv Cz;_ps(s)! and
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(1 a)ﬁt r(r- tEQ{eXp(psoO}\/—Z ) 2,5} l[dz _pSJ(ZT _pszsaaﬂ)J}

\/1 - P325

- Kl a0 o2 - i N7 ).

Theorem 2 follows by applying A5 to Theorem 1. By partial differentiating upon the results of
Theorem 1 with respect to S, , together with A, the result of Theorem 3 follows.

APPENDIX B

Proof of Theorem 4.
For convenience, the system of simultaneous equation (11) is re-numbered as follows:

P+, +P+p, =1 (6.0
uds =1 (b2)
u,d, =1 (0.3
us(pl"'pz)"‘d (p3+p4)—exp{rAn} (b4)
| up+py)+d,(p,+py)=e j (¢ ~ob a2, 2) (b3
us(p1+p2)+ds(p3+p4 =ex (2r+G§)An} (b.6)
U3(py+ p,)+d3(p, + ps) = expl(ex, +3a5)A, | (b7)
UsU; P, +ugdsp, +dsdsp, +dsusp, =ex (r+aD+aS§5) } (b.8)
Rearranging equations (b.1) leads to p, + p, =1- ( + p4) and substituting this into (b 4)
results in
(ug —dg X ps + p,) = Us —exp(ra, ). (b.9)

Result (b.9) leads equation (b.6) to turn out u§ - {exp(— rA, )+ exp[(r + O';')An ]}uS +1=0.

Thus Ug =1+ G3A, /2+\/0'52A +(r +ro? +30'S/4)A2 +0(A ) exp(as\/A_n), and

dg =1+02A, /2~ \/agA +(r +|’GS+30'3/4)A2 +o(A, )~ eXp(—O'S\/A—n).
Similarly, results of equations (b.1) and (b.5), lead to

(us —d, Xp, + ps) = u, —expl- (62 — o2 — a2 A, /2}. (b.10)
Furthermore, combining (b.7) and (b.10), results in
u, =1+02A, /2+\/05A +[aD(ag+aD)+3a /4JA +0 ~ exp(am/A_n),
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and d; =1+02A, /2~ \/0'§A +[aD(05+aD)+305/4JA +o(A exp(—aM/An).

Finally, parameters {pi} could be solved via the equation, BX = £, where

1 1 1 1
0 0 1 1

B= 0 1 1 0 ' XT:[pl,pz,pg,p4], ,BT:[l,,Bl,ﬂz,ﬂg] and
uu, ud, dyd, dgu,

;' s are determined from equations, (b.1), (b.9), (b.10) and (b.8). This completes the proof.

APPENDIX C
Sketch of the CBT algorithm

The time interval [t,T] is divided into k, subintervals of equal length A, , with
A, =(T —t)/k,. Trading is supposed to occur at equidistant time points t , =t+iA,, for
i= O,l,2,~-,kn. The j-th node at time t; = is referred to as the (i, J) node, and the stock price at
the (i, j) node is

S, =Syo(L+u, ) (L+d, Y =S exp|2j —i)os /A, |.

with S, =S,, for 0< j <i <Kk, . Here u, —exp(as\/_) d. _exp( A -1,
P, = (I’n —dn)/(un —dn), r = exp(rAn)—l, d, <r, <u,,and risthe risk-free interest rate.

Applying the double expectation property of bi-variate normal distribution, equation (5) is
re-expressed as:

I (t)=e""" EQ{(S - EQ[l +(1-a)1 ‘<d*}5T|sT]}.

{or=d"}

From statement (7), the conditional distribution of In&; , given InS; =InS, ., is normally
distributed, say

d
2 .
NG |s s, ~Nila ;.52 ). for 0<j<k,

where oy ;= s, +p550'§(|n Sk..j — Hsy, )/O's’ ,Bkzn :(T _t)o'é(l_psza‘)!
Hsx =InS, —(T —t)(o*i —O'é)/Z, tsy =InS, +(T —t)(r—of/Z), and o >0.

Let f;; be the arbitrage value of the vulnerable European call option at the (i, J) node, then
fi,j = exp(_ rAn)‘ [pn fi+1,j+l + (l n) |+1 J] for 0 < J < I < k

with initial conditions f, ;=& ., for 0< j<k; . Here
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Sk,j = EZ [CT ‘ St =95, :(Skn,j _K)+[l//kn,j +(1_a)7z.kn,j]’

STzskn,j]:(Dl(_gkn,j)! gkn,j:(lnd*_akn,i)/ﬂkn , and

where ;= E [1{

5Tzd*}

7 =EQ [5T1{5T<d*} S, = skn,j]z expla, + A2 12)-@,(0, - B. ).

kn

Beginning from initial values {fknvj}jzo

, and moving backward throughout every node of the

binomial lattice, the arbitrage price of the vulnerable European call option at the current time point, is
determined to be f ;.
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