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Abstract

This paper presents a formal mathematical model for magagiablems of stochastic demands; con-
fronting many industries in the society today. We considev@ stage supply chain where the upstream
manufacturer (stage2) must always fill exogenous demawods fhe downstream manufacturer (stagel)
using two types of expediting : Overtime production and outsing.
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1. INTRODUCTION

A supply chain, typically, consists of suppliers, manufisictg centre, warehouses, distribution centre and
retailers as well as raw materials, work-in-process inmgnand finished products that flow between the
facilities. In traditional supply chain situations, dowmeam facilities make decisions about their order
quantities without regard to the actual inventory avagalghstream. If the upstream facilities do not have
enough inventories on hand to fill the orders, it is often assdithat the downstream facility will take what
it can get and backorder the rest or outsource elsewhererdbr to avoid these shortages, the upstream
facilities have traditionally set their inventory levelggh enough so that the likelihood of not meeting
downstream demand is low. Every manufacturer usually ragiata reasonable inventory of goods to
ensure smooth operations. Inventory is a necessary evlitie of it causes costly interruptions, too much
results in idle capital. The inventory problem determirtesinventory level that balances the two extreme
cases. An important factor in the formulation and solutibaminventory model is that the demand (per
unit time) of an item may be deterministic (known with cemtg) or stochastic (described by a probability
distribution).
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2. REVIEW OF RELATED LITERATURE

The term supply chain management arose in the late 1980same imto widespread use in the 1990s.
Prior to that time, businesses used terms such as “lodigtius “operations management” instead. The
supply chain management literatuiféess many variations on the same theme. The most common aefinit
[Houlihan (1985), Stevens (1989), Lee and Billington (1988d Lamming (1996)] is system of suppliers,
manufacturers, distributors, retailers, and customersmhmaterials flow downstream from suppliers to
customers, and information flows in both directions

The year 1958 may be considered the inception of stochas&éntory control, with the publication of
studies in the mathematical theory of inventory and pradacArrow, K., J, Karlin and Scarf, H. (1958).
Almost all current articles in the field can trace their idbask to this excellent text. The entire supply chain
success is dependent on a good inventory system.

Lately, several articles are continually being publishedhis area. M.E. Seliaman and Ab Rahman
Amad (2008) developed a model that dealt witietient inventory coordination mechanisms between the
chain members in a three-stage, non-serial supply chat@emmyd heir assumption is that demand is stochas-
tic at the retailer’'s end. Pablo, A., Miranda, Rodrigo, A(@009) proposed a sequential heuristic approach
to optimize inventory service levels in a two-stage supplgic. Their proposed approach deals with service
level and inventory decisions; simultaneously, with netnesign decisions and incorporates unfulfilled
demand costs in a previous inventory location model.

R.M. Hill, M.Seifbarghy and D.K. Smith(2007) considered iagte-item two-echelon, continuous-
review inventory model where a number of retailers have steck replenished from a central warehouse.
The warehouse in turn replenishes stock from an externalisupS.S. Alireza, M.E. Kurz and J. Ashay-
eri(2010) addressed specific inventory management desisiith transportation cost consideration in a
multi-level environment. They developed two models-nantkdcentralized ordering and centralized or-
dering model to investigate thdfect of collective ordering by retailers on the total invegtoost of the
system.

Xueipng LI, Yuerong Chen (2010), studied a single-product inventgsgesn which involves a sup-
plier, a retailer, and dlierentiated customers. Inventory control, in recent tingespntracted to a vendor.
Vendor-managed inventory (VMI) is emerging as a significgatelopment in the trend towards collabo-
ration and information sharing in supply chain managemBiredra, K.M., Sirinivsan, R.(2004) provide
a new explanation for the reasons retailers might be ineslaa VMI. Optimal policies for a capacitated
two-stage inventory system was investigated by RodneyaRdP Roma, K.(2004). Their paper demon-
strates optimal policies for capacitated serial multiedeh productiofinventory systems. Discrete-time
inventory model with stochastic demands with a constamt teae and lost sales was considered by Paul
Zipkins(2008).

With standard assumptions of single-location system alirgroduction costs, holding costs, penalty
cost and full backlogging, a base-stock policy is optimalifeear-ordering case (or no ordering cost), (Kar-
lin,1958), an § S) policy is optimal for the linear-plus-fixed-ordering castse (or a fixed orderirigetup
cost), Scarf(1960); Iglehart,(1963), and &) r{Q) policy is optimal for the batch ordering case (Veinott,
1965). Detailed results of ars,(S) policy explicitly for discrete demand can be found in Veiremd Wag-
ner (1965), and Zheng and Federgruen (1991). Scarf prodrttgeneral, ¢ S) policies are optimal
for inventory control problems with setup costs for prodoet Veinott proved same result. Both authors
considered inventory problems over a finite horizon. Zhesgegalized the results of Scarf and Veinott in
his article over the infinite horizon in a novel way.

Yun Zhou, Xiaobo Zhao (2010) worked on periodic review inegn system that serves two demand
classes with dferent priorities. Unsatisfied demands in the high-prioclass are lost, whereas those in
the low-priority class are backlogged. They formulated pheblem as a dynamic programming model
and characterize the structure of the optimal replenistipelicy. B.Q. Rieksts, €A.Ventura(2010) paper
discusses inventory models over an infinite planning haorizith constant demand rate and two modes of
transportation.
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In this work, we consider problems over an infinite horizondewe rely heavily on the results from
Zheng. However, one area where our assumptioffisrdirom Zheng’s are that he assumes that backorders
are allowed; we modify this assumption in line with Eric, lugjins (2002, 2007). Huggins considered
a problem with stochastic demand where the downstreanitfecsgupply requests are always met by the
upstream facility and backordering are not allowed at th&trepm stage, hence the need for expediting
using overtime production and premium freight. We shalgiagligress away from Huggins in work. We
replace his premium freight with outsourcing and add the&alf information sharing into our models of
the two-stage supply chains.

3. STATEMENT OF THE PROBLEM

We consider a periodic review two-stage supply chain siinavhere an upstream manufacturer (stage2)
must always meet the supply requests from the downstreaplisufstagel). If we assume each period
to be a day, for convenience, such that each day stagel ayjgPstach, produces up to chosen inventory
levels, and at the end of the day, stagelplaces an exogeamasd on stage2 for raw materials. If stage2
cannot meet this demand from the current inventory and aequrbduction then there exists a shortage
which must be filled using overtime production. At the end eérdime production, the part that could not
be produced is outsourced.

4. MATHEMATICAL FORMULATIONS

Our ultimate goal in this research is to find the optimal potltat minimizes the expected total discounted
cost over the infinite horizon for the two - stage supply chmanagement. We define the variables of our
models as follows:

Indices: k, indexes discrete timer, stationary policiesy = {u, g4, .. .}.

Parameters

a: discount factor

IT: set of all admissible policies

pi(+): the probability that an order will be placed

Xk: state of the system at time k and summarizes the past infamm@eeded for future optimization.

Zi: the control variable to be selected at tim#& Random parameter also called disturbarge.Exoge-
nous demand\: The horizon or number of times control is applied.

r(Xy): Penalty cost for holding stock.

cZ: the unit cost of orderingy.

Our stock shall evolve according to the discrete-time dqnat

Xir1 = X + Zx — Dy 1)

forall k, Xk € S, Z € C, Y € D whereS andC are non empty sets aridlis a countable set.
The cost per stagg: S x C x D — R is given, and defined as:

9% Zk, Yi) = r(X) + CZ. @)
We denote by, the set of all admissible policies , that is, the set of ajusaces of functions
7= {uo, f1, - ..}, Wherepy : S = C, u(Xe) € Z(Xx) ¥V Xc € S, k>0

have identical statistics and are characterized by préibebP(- | Xk, Zx) defined orD, whereP(Yy| Xk, Zk)
is the probability of the occurrence ¥, when the current state and control XgeandZy respectively, but
not on values of prior disturbanc#g 1, 1, ..., Yo. We define our stationary policy as an admissible policy
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of the formn = {u, , ...} and its corresponding cost function is denoted by J We sbfat tofu, ., . ..} as
the stationary policy.. Hence we say thatis optimal if

Ju(X) = J*(X) V statesX 3)

Finally, we minimize the optimal cost function over an infenhorizon as follows:

N-1
Minimize [im EDk{Zakg(Xk, Z, Y. 4)
—00 k:O

Subject tog(Xc, Zc. Yi) = 0V (X, Zi. Yi) € Sx C x D
Z¢>0,k>0,...,N-1
XkCS, ZxcC, Yyc Dandg: SxCx D + R is the cost per stage

whereD is a countable set, contrdl is constraint to take values in a given nonempty suB¢kt) € C
which depend on the current statg{ Zx € Z(Xx) VY Xk € S], Z, k > 0 to determine the optimal inventory
control policies.

5. RESEARCH METHODOLOGY

The argument that minimizes equation (4) above is our maerést. This is, typically, an inventory
control problem. To solve this problem, we shall use thegipies of optimality in dynamic programming
developed by Bellman(1957) and follow the notational coniams of Bertsekas(1995).

6. OPTIMALITY CONDITION: (BELLMANS EQUATION)

An optimal policy has the property that whatever the initdte and the initial decisions, the remaining
decisions must constitute an optimal policy with regarcdmgtate resulting from the first decision.
Proposition 1 The optimal cost functiod* satisfies

Jr(Xo) = Cll'r? Ep{9(Xk, Z, Dk) + aJ;[ f(Xk, Ze, D)}, ¥ Xk € S.

Or equivalently,J* = TJ*. FurthermoreJ* is the unique solution of this equation within the class of
bounded functions.
Corollary 1 For every stationary poligy the associated cost function satisfies

Ju(¥) = Ep{g(X,Z,D) + aJ,(f(X,Z,D))} V X € S.
Or equivalentlyd, = T, J,.
And J, is the unique solution of this equation within the class aiitided functions.
Proposition 2 Under either assumptiddor N, the optimal cost function];(Xo) satisfies

J(Xo) = Qi‘? En{g(Xk. Zc. Di) + aJ [ f(Xk. Zc, D]} ()

Or equivalentlyJ* = T J*.
Corollary 2 Letu be a stationary policy. Then under assumptiBres N, we've

J‘u = ED{g(Xk, Zx, Dk) + a\]:;[ f(Xk, Zx, D)]}, Xc € S.

Or equivalentlyJ, = T, J,.
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Proposition 3 A stationary policyu is optimal if and only ifu(X) attains the minimum in corollary 2 for
eachx € S, thatisT J* = T, J".
Proposition 4 For every stateXq, the optimal costl*(Xp) of the basic problem is equal t&(Xo), where
the functionJ is given by the last step of the following algorithm, whiclopeeds backward in time from
periodN — 1 to period O:

In(Xn) = On(XN),

ZeUk(Xi)

where, the expectation is taken with respect to the proibadiktribution of D which depends oiXy and
Z. Furthermore, iZ; = wu(Xx) minimizes the right hand side of equation above for e¥¢landk, the
policy IT* = {ug, ..., uy_,} is optimal
The argument of the preceding proof provides an interpoetatf J,(Xi) as the optimal cost for amN(— K)-
stage problem starting at sta¥g and timeK, and ending at timé&\. We consequently, calli(Xx) the
cost-to-go at stat®y and timek, and refer talk as the cost-to-go function at tinke

Consider &-stage policyr = {uo, u1, . . ., uk-1}. Then the expressiof f,, Ty, . .., Ty, J)(X) is defined
recursively fori =0, ..., k-2 by

(T Tasas -+ > T DO = (T (T -+ T s N9

and represents the cost of the policyor the k-stage « discounted problem with initial stab€, cost per
stageg and terminal cost functiom®J.

J.(X) = h|lian(T,,NJ)(X) vV XeS.

6.0 Backward recursion for the two- stage supply chain memegt problem HereKk = 2, we write out
this algorithm for stagel and stage2 as follows:

(T?23)() = minEn(g(XZ,D)+a(T H(f(X.Z D)}

= MinEp,(g(Xs. Z1, Da)} +amin Ep, (g(f (Xs. Z1, D). Z2. D2)

+aJ(f(f(X1,Z1, D1), Z2, D2))}
= r;r;llg] Epb, {0(X1,Z1, D1)} + r;;llg] Eb,{ag(f(f(X1,Z1, D1), Z2, Do)},

We now present the two - stage supply chain managementtegiais follows: Define the following
variables:

D:: The exogenous demand experienced by stagel during getisdally a day (for convenience).
X1t Stagel inventory level at the start of period

Y1t: Stagel production quantity during period

Z;;: Stagel inventory position after production during petiod

Xo1: Stage2 inventory level at the beginning of period

Y21: Stage2 regular production quantity during period

Zy;: Stage?2 inventory level after regular production duringqugt.

X1 The stage2 inventory level at the start of overtime, ateeiving Demand from stage1 during period
Y2:: The stage2 overtime production quantity during petiod

Z,:: The stage2 inventory level after overtime production giperioct

X%’t: The stage?2 inventory position at the start of outsourcimgd periodt.

Yzl’t: The stage?2 outsourcing quantity during period

Z%,t: The stage?2 inventory level after outsourcing during ptio
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Every production process entails various cost implicatioAt stagel set up costs are assessed for
production (C,) , holding cost ki;) and since backordering is allowed at stagel, we've baekorg costs
(by). At stage2 backordering is not allowed, however, lineasteare assessed for productiap) (@and
holding cost [1,), overtime production incurs linear cosh) plus fixed costskp) and outsourcing incurs
linear costsz) plus fixed costKs). All the costs are assumed to be discounted every periodégter o,
with 0 < @ < 1. We now present our sequence of activities at both stageslew:

/. DECENTRALIZED MODEL

The two stages of supply chain management are independastdind each seeking to minimize its own

costs. These costs includes: linear cost of productiondidglcost and backordering costs respectively.
We determine the optimal inventory control policy for stagand proceed to show that it is a base-stock
policy. We establish that the optimal inventory controlippifor stage2 is a base-stock policy under the
assumptions below: -That overtime production is the onlyhoeé of expediting available to stage?2.

7.1 Stagel Optimal Policy Under Decentralized Control

Under decentralized control, stagel is an independent fidmaakes decisions based on the initial inven-
tory available X;. He incurs linear cost of productiocy, holding costh; and backordering co$t. All the
variables discussed in this section occur during the samedyé so we drop the subscripfor notational
convenience.

The 1-period costs experienced by stagel are:

Ordec(X1,Z1, D) = C1(Z1 — X1) + h1(Z1 - D) + by(Z1 - D)~
= C]_Z]_ - C]_Xl + h]_(Zl - D)+ + b]_(zl - D)_

With Z; > X, clearly,g14ec(-) = 0. Hence the optimal cost functio}“liydec(xl) satisfies

N-1
3 4ec(a) = min lim Ep( ) 0*01aec(X1. Z1. D))
B k=0

The argument that minimizes this equation is the optimatirtery control policy we seek. To determine
this policy, we use a technique similar to Veinott(1965)gdins(2002). We proceed as follows:

Move the—C;X; term back to the previous period aaC;(Z; — D) and determine our moved one period
costs as:

91.decv(X1, Z1, D) Ci1Z1 — aCy(Zy — D) + hy(Zy — D)* + by(Z1 - D)~

= C1Z1-aCiZ1 +aCiD + hl(Z]_ - D)Jr + bl(Z]_ - D)7

= (1 - a')C]_Z]_ +aC.D + h1(Zl - D)Jr + bl(Zl - D)7
Z1 > X;.

We use this method to derive the optimal policy for stagefp-btg-step for two reasons:
i) The more complicated derivations later in the thesis terfdllow the same steps and we feel that the
proof of lemmal below is a good introduction to this methodgl

i) One of the steps we will frequently use is to “move” a terackward to the previous period.
Lemma. The optimal policy that SO|Ve§iLdeC(X1,0) also 50|VeS]idec,v(X1,0)- And Jidec(xl,o) =—-C1X10+
J1.decv(X1,0)-

21



Nwozo, C.R; Akoh, DProgress in Applied Mathematics Vol.2 No.2, 2011

Proof:
N-1
JgedXeo) = min lim Ep()" a*g1aedXik. Zik. D))
=0
= min lim Ep{a[Ca(Zak — Xak) + Na(Zok — D)* + b1(Zyk — D)1}
= milQ nlnim Ep{a"Ci(Zik — @"CiXex) + @[ (Zok — D) + by(Zik — D)1}
S —00
N-1
— min i k(_
= min lim Epf{ ) @*(=C1X1x))
pary)
N-1
+mir? ’\I‘im En{ Y a"[CiZix + hy(Zik — D)* + by(Z1x — D)1}
e —00 pry
Thus,
N-2
I gedX10) = -CiXio+ EI;IIQ Jl@w ED{Z o [C1Z1x + Ni(Zox — D)* + by(Zix — D)~

pary
—aCy(Z1 - D)] + @™ [C1Zyn-1 + hi(Zan-1 — Din-1)*
+0b1(Zyn-1 — Din-1)7)

N-2
- in li k -
= ~CiXyo+min lim ED{; aM{Grdecu(Xuk Zuk D) 1)

+min lim {a"[C1Z1n-1 + M(Zin-1 — Din-1)" + b1(Zin-1 — Din-1)7]}

7ell N—oo

N-2
= —CiXy0+ gllly Jl@w ED{; @ [g1.decv(X1k, Z1k, D)1} + 0

= —Ci1X10+ Jidecv(X10)-

We now consider the optimal cost functidfy, . (X1, Z1, D).

Jidecv(xl’ Z,,D) Zrlnzlgl Ep{91decv(X1, Z1, D) + a‘]idecv(zl - D)}

Min{Ep[grdecv(X1, Z1, D)] + @Ep[J; gec(Z1 — D)}
1=/A1

MiN{Gydecv(Z1) + @Ep[J] gecy(Z1 — D)]}.
Z3>X1
From
g]_,decv(xl, Z1, D) = (1 - CL’)C]_Z]_ +aCiD + h]_(Z]_ - D)Jr + b]_(zl - D)f,

itis clear thats1 geqv(Z1) is convex and se Gy gecv(Z1) unimodal. We now apply the method used by Zheng
(1991) to show that the optimal inventory control policy tgel is a base - stock policy. To apply the
results from Zheng’s paper, we need th&l; gecy(Z1) is unimodal and thabi geqy(Z1) — o as|Z;| — .

For Z; < 0, the slope(in the discrete sense)@fgecv(Z1) is —C3 + (1 — @)Cy < 0 by assumption (A6).
Thus, asZ; — —co, Gigecu(Z1) — o asZy — oo, the slope 0fG1 gecv(Z1) becomes (E a)ci + hy > 0
and thusG 4eqy(Z1) — 0, hence we have that the optimal inventory control policytagel is a base-stock
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policy. We now define the base-stock levelSig,. We assume that the initial inventory is not more than
this value that isX; < S1 dec» WE can caIcuIatéidec(Xl).

JgedX) = —CiXy+ ] g (X1)

= —Ci X1+ mlnzl>x1{G1 decv(Zl) + a/ED[Jl decv(Zl - D)]}

—C1 X1 + MiNz;>x,{G1.decu(S] ged + YED[I] gecu(Sigec— DI}
—C1X1 + G1dec(S] ged + ¥Ep[ I} gecu(Stgec = D)

—C1 X1+ Gy deCV(Sl de() +aGy deCV(Sl de() +a ED[J

(Sl decv D)]
_C]_Xl + Gl,deCV(Si dec) + aGlydecv(Side‘)[l +a+ a’ + - ']

Grdecy(Sy, dec)
1-«a

l,decv

—Ci X1 +

Hence under decentralized control, the optimal policy agel is to order-up t8] ;.. every period. Note
that due to the base-stock policy, stagel will pass the ebeantind it experiences back to stage2, and stage2
will face the same demand that stagel faces.

7.2 Stage2 Optimal Policy Under Decentralized Control

Under the decentralized control, stage? is an independentTihe manager makes decisions based on the
initial inventory available X, and the potential costs incurred. Stage?2 faces the samendedisdribution
as stagel. We assume that overtime production is the onlyadeitf filling shortages. Thus, the overtime
decision is straightforward. Note that per unit cost of ¢éimee production is more than that of regular
production, hence it will never be cosffective to produce more than the shortage with overtime pribaiu
During periodt, stage2 will receive ordeY;,; = D; from stagel. At the beginning of overtime, the
inventory level iSXz,t =2t — Y1 if Yg,t < 0, then overtime production must be employed. This quantity
iS (Z21 — Dy)~. All the variables occur during the same perigdso we drop the subscript. The one period
costs experienced by stage2 are

O2.ded X2, Z2, D) = Ca(Z2 = X3) + h2(Zz = D)* + Co(Zz — D)™ + Kod(Z2 — D)~
with Z; > X3. Clearly,gzded) > 0 and hence the optimal cost functidfy,. (Xy) satisfies

J2.gedX2: Z2, D) = Min Ep(G2ded X2, Z2, D) + @35 gec(Z2 ~ D).

To determine the optimal policy, we move th€,X, term back to the previous period aaCy(Z, — D)*
as we did in the previous section. We now define our moved orieceosts as,

G2dec.v(X2, Z2, D) = CoZz + Kod[(Z2 — D)7] + Co(Z2 — D)™ + (2 — aCo)(Z2 — D)*

with Z, > X3. Note that the optimal policy that solvés. (Xz) also solvesl; ;.. . (X2).
And Jz’dec(xz) —C2Xz0 + J2decy

‘];,dec,v(XZ) = er>i>r(12 Ep{G2.dec (X2, Z2, D) + a"]z,dec,v(ZZ - D)}
= m>in {Gz,dec,v(ZZ) + QED[Jz,dec,v(ZZ - D)]}

whereG; dec,v(Z2) = Ep{Q2dec (X2, Z2, D)}
Again we apply the result from Zheng as before, we need to shats, gec (Z2) — o as|Z;| — « and
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that -Gy gec.v(Z2) is unimodal or thaG; gecv(Z2) is quasiconvex. Fory < 0, the slope 0f52gecv(Z2) is
C, — Cp < 0 by A3, thus, aZ, — —o0, Gagecv(Z2) — 0. AsZ, — +oo, the slope 0fG, gec v(Z2) — o
becomed, + (1 — @)C, > 0, and thusG, gec(Z2) — . Hence we have from Zheng that the optimal
inventory control policy at stage2 is a base-stock policy.

We now define the optimal base-stock levelsds,, under the assumption that the initial inventory is

not more than this valuex, < S5 gec We compute];,;jec(xz),
Jz,dec(XZ) = _CZXE + J2.decv(X2)

_CZXE + min {GZ,decv(ZZ) + aED[J; de(;v(zz - D)]}
Z>Xp i

—C2X; + Gadecv(S3 ded + @Eb[ I3 gecy(S; — DI

_szér + Gz’deCV(S;,deC) + an’deCV(S;,de(‘) + azED[szecv(S;’dec— D)]
_CZXS + GZ,deCV(S;,de()[l +a+a?+-- ]

GZ,deCV(S;,dec)
l-a '

_CZXS +

Hence under decentralized control with overtime as the exipediting option, the optimal policy at stage2

is to order-up td&s; . every period.

8. CONCLUSION

Note that the decisions are made separately by the two stagés our decentralized model. Under the
assumptions of the centralized model, all decisions alBput, Z,; andZ,;.1 are made at the same time,
where stage 1 makes its decision in the time line. In our medemake the following assumptions. First,
as mentioned above, we assume a discount factaith O < & < 1. Second, we assume that demand is
discrete, non-negative, stationary, and from a discretbatyility distribution. We assume that the expected
value of demandy, is positive and finite. Third, we assume that per unit costvafrtime production at
stage 2 is greater than per unit cost of regular productistagte 2. Fourth, we assume that the cost of
backordering at stage 1 is not so small that it is cheapemtayal backorder than to produce. All of these
assumptions are fairly standard.

REFERENCES

[1] Arrow, K. J., Karlin, S. and Scarf, H. (1958%tudies in the Mathematical Theory of Inventory and
Production Stanford: Stanford University Press.

[2] Bertsekas, D. (1995Dynamic Programming and Optimal ContrVol. 2). Belmont, MA: Athena
Scientific.

[3] Biredra, K. M., & Sirivsan, R. (2004). Inventory Decisis in Dell's Supply Chainlnterfaces, 34
102-114.

[4] Clerk, A. J. & Scarf, H. (1960). Optimal policies for a ntiséchelon inventory problenManagement
Sciences, $475-490.

[5] Eric, H. (2007). Supply Chain Management with Guaradt®elivery.Management Science, 8202-
216.

[6] Hill, R. M., Seifbarghy, M. and Smith, D. K. (2007). A TwBehelon Inventory Model with Lost Sales.
European Journal of Operations Research, 1833-766.

24



Nwozo, C.R; Akoh, DProgress in Applied Mathematics Vol.2 No.2, 2011

[7]1 Hill, R. M., Seibarghy, M. & Ashayeri, J. (2010). On the I&aptimality of (s-1, S) Lost Sales Inven-
tory Policies.International Journal of Production Economics, 387-393.

[8] Huggins, E. (2002). Supply Chain Management with Oweetiand Premium Freighkanagement
Sciences, 4820-235.

[9] Houlihan, M. (1985). Optimal Centralized and Decerimadl Control Policies for a Two-Market
Stochastic Inventory Systerilanagement Science, 3411-117.

[10] Kurz, S. S. and Ashaveri, J. (2010). Optimal Inventoojiles in Decentralized Supply Chaira-
ternational Journal of Production Economics, 1284-214.

[11] Lamming (1996). Optimal Policies for a Capacitated Tichelon Inventory Systen@perations Re-
search, 2991-99.

[12] Lee, H. and Billington (2000). The Value of Informationa Two Stage Supply ChaiManagement
science, 45633-640.

[13] Pablo, A. M., Rodrigo, A. G. (2009). Inventory Servitevel Optimization within Distribution Net-
work Design Probleminternational Journal of Production Economics, 122,6-285.

[14] Zipkins, Paul (2008). Material Management in a Decalited Supply ChainOperations Research,
41, 835-847.

[15] Rieksts, B. Q., Ventura, A. (2010). Two-Stage Invegtdiodels with a Bi-Modal Transportation Cost.
Computer& Operations Research, 320-31.

[16] Rodney, P. P. & Roma, K. (2004). Inventory Routing Pesbé: A Logistical Overviewdournal of
Operational Research,, 47-89.

[17] Scarf, H. (1960). The Optimality ofs( S) Policies in Dynamic Inventory ProblenMathematical
Methods in the Social Scienc8sanford, CA: Stanford University Press.

[18] Seliaman, M. E. & Amad, AbRaman (2008). Optimizing Int@ry Decisions in a Multi-Stage Supply
Chain Under Stochastic Demandgpplied Mathematics and Computations, 2688-542.

[19] Stevens (1993). Stock Wars: Inventory Competition ifwap-Echelon Supply Chain with Multiple
Retailersinternational Journal of Production Economics, B8-95.

[20] Veinott, A. & Wagner, Z. (1965). Optimal Policy for a Mi#Product, Dynamic Non-Stationary In-
ventory ProblemSIAM journal of Applied Mathematics, 14067-1083.

[21] Xeipng, Li, & Yuerong, C. (2010). Optimal Inventory Rcikes in a Decentralized Supply Chain-
ternational Journal of Production Economics, 12383-309.

[22] Yun Zhou, Xiaobo (2010). A Two-Demand-Class Invent8gstem with Lost-Sales and Backorders.
Operations Reseach letters,,3851-266.

[23] Zheng, Y. & Federgruen, A. (1991). A Simple Proof for @pality Policies in Infinite Horizon Inven-
tory SystemsJournal of Applied Probability, 28802-810.

25



