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Abstract
Mean reversion is an important property for constructing 
efficient on-line portfolio selection strategy. The existing 
strategies mostly suppose that the mean reversion is multi-
period symmetric or single-period asymmetric. However, 
the mean reversion is multi-period and asymmetric in the 
real market. Taking this into account, on-line strategies 
based on multi-period asymmetric mean reversion is 
proposed. With designing multi-piecewise loss function 
and imitating passive aggressive algorithm, we propose 
a new on-line strategy WMAAMR. This strategy runs 
in linear time, and thus is suitable for large-scale trading 
applications. Empirical results on four real markets show 
that WMAAMR can achieve better results and bear higher 
transaction cost rate.
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INTRODUCTION
Portfolio selection, which has been explored in both 
financial and quantitative fields, aims to obtain certain 
targets in the long run by sequentially allocating 
the wealth among a set of assets. Mean-variance 

theory (Markowitz, 1952), which trades off between 
the expected return (mean) and risk (variance) of a 
portfolio, is suitable for single period portfolio selection. 
Contrarily, Kelly investment (Kelly, 1956), which 
maximizes the expected log return of a portfolio, aims 
for multiple periods portfolio selection. Due to the 
sequential nature, recent on-line portfolio selection 
techniques often design algorithms following the second 
approach.

One important property exploited by many existing 
studies (Borodin et al., 2004; Li et al., 2011, 2012) is the 
mean reversion property, which assumes poor performing 
stocks will perform well in the subsequent periods and 
vice versa, may better fit the financial markets. Though 
some recent mean reversion algorithms (Li et al., 2011, 
2012) achieve the best results on many datasets, they 
perform extremely poor on certain datasets, such as DJIA 
datasets (Borodin et al., 2004). Comparing with Borodin 
et al. (2004), which exploits multi-period correlation, we 
found that the assumption of single-period prediction may 
attribute to the performance degradation. Meanwhile, 
these exist algorithms (Li et al., 2011, 2012) consider the 
symmetric mean reversion while there are asymmetric 
events in the real market.

To address the above drawbacks, we present a new 
approach to on-line portfolio selection, named “Weighted 
Moving Average Asymmetr ic  Mean Reversion” 
(WMAAMR). The basic idea is to represent multi-period 
asymmetric mean reversion as “Weighted Moving Average 
Reversion” (WMAR), which explicitly predicts next price 
relatives using weighted moving averages, and then learn 
portfolios by online learning techniques. The rest of the 
paper is organized as follows. Section 2 formulates the 
on-line portfolio selection problem, and Section 3 presents 
the proposed WMAAMR approach, and its effectiveness 
is validated by extensive empirical studies on real stock 
markets in Section 4. Section 5 summarizes the paper and 
provides directions for future work. 
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1. PROBLEM SETTING
Consider an investment task over a financial market with 
m assets for n periods. On the tth period, the assets’ prices 
are represented by a close price vector pt = (pt(1), pt(2),…, 
pt(m))∈Rm

+. Their price changes are represented by a 
price relative vector xt = (xt(1), xt(2),…,xt(m))∈Rm

+., and 
xt(i)=pt(i)/pt(i). Let us denote the sequence of price relative 
vectors for n periods as xn=(x1,x2,…,xn).

An investment on the tth period is specified by a 
portfolio vector bt = (bt(1), bt(2),…,bt(m)), where bt(i)
represents the proportion of wealth invested in asset 
i. Typically, we assume the portfolio is self-financed 
and no margin/ short is allowed, therefore each entry 
of a portfolio is non-negative and adds up to one, 
that is, bt∈Δm, where Δm = {bt∈Rm

+, Σ
m
i=1bt(i)=1}. The 

investment procedure is represented by a portfolio 
strategy, that is, b1=(1/m,1/m,…,1/m)and following 
sequence of mappings bt∶R+

m ( t-1)→Δm, t=2,3,…, where 
bt = bt(x

t-1) is the tth portfolio given past market sequence 
xt-1 = (x1,x2,…,xt-1). We denote by bn = (b1,b2,…,bn) the 
strategy for n periods.

On the tth period, a portfolio bt produces a portfolio 

period return St = bT
t·xt=Σ

m
i=1bt(i)xt(i). Since we reinvest 

and adopt price relative, the portfolio wealth would 
multiplicatively grow. Thus, after n periods, a portfolio 
strategy bn produces a portfolio cumulative wealth 
of Sn, which increase the initial wealth by a factor of 
∏n

i=1b
T
t·xt, that is, Sn(b

n,xn)=S0∏
n
i=1b

T
t·xt, where S0 is set to 

1 for convenience.Note that the above model in general 
assumes zero transaction cost/ tax, perfect market 
liquidity, and zero impact cost.

2 .  WEIGHTED MOVING AVERAGE 
ASYMMETRIC REVERSION

2.1 Formulation
Let us denote x～t+1 as the predicted relative price of the 
t+1th period in the end of the tth period. ωw is the weighting 
coefficient with property of smaller as time longer, that is, 
ωw(i)=2(w-i+1)/w(w+1), where w>0 denotes the window 
size of time. Then x～t+1 satisfies that x～t+1(w)=Σw

i=1ωw(i)xt-i+1, 
which can be represented as x～t+1=WMAR(xt,xt-1,...,xt-w+1).
Define the loss function as
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Where C1, C2 and ε are both nonnegative.
Optimization Problem: WMAAMR
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The  above  fo rmula t ion  i s  t hus  convex  and 
straightforward to solve via convex optimization. We 
now derive the WMAAMR solution as illustrated in 
Proposition 1.

Proposition 1. The solution of WMAAMR without 
considering the non-negativity constraint is
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Where x-t+1=(1·x~t+1) denotes the average predicted price 
relative and α is the Lagrangian multiplier calculated as,
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2.2 Algorithm
The WMAAMR algorithm is motivated by the weighted 
moving average. Figure 1 is the framework of investing 
by use of the WMAAMR algorithm.

Algorithm 1 The WMAAMR Algorithm for On-Line PS

Input: Threshold ε; relative price vectors xn; window length w

Output: Cumulative wealth Sn

1. Initialize: b1=1/m, S0=1

2. For t=1, 2, K, n do

3. Receive stock price relatives: xt

4. Update the cumulative wealth St=St-1(b
T
t xt)

5. Predict the next period relative price x%
t+1=WMAR(xt,xt-1,K,xt-w+1)

6. Update the portfolio: 
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8. end for

Figure 1
The Proposed WMAAMR Algorithm
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3. EXPERIMENTS
We now evaluate the effectiveness of the proposed 
WMAAMR algorithm by performing an extensive set of 
experiments on publicly available datasets from real stock 
markets.

Table 1 
Summary of 4 Real Datasets

Dataset Time frame Region # assets

NYSE(O) 1962.7.3-1984.12.31(5651 days) US 36

NYSE(N) 1985.1.1-2010.6.30 (6431 days) US 23

SP500 1998.1.2-2003.1.31 (1276 days) US 25

DJIA 2001.1.14-2003.1.14 (507 days) US 30

In our experiments, we empirically set the parameters, 
that is, ε=10, C1=1, C2=2 and w=5. 

3.1 Cumulative Wealth
Table 2 illustrates the main results of this study, that is, 
the cumulative wealth achieved by various approaches. 
The results clearly show that WMAAMR achieves the top 

performance among all competitions. On the well-known 
benchmark NYSE(O) datasets, WMAAMR significantly 
outperforms the state of the art.

Table 2 
Cumulative Wealth Achieved by Various Strategies on 
Four Datasets

Methods NYSE(O) NYSE(N) SP500 DJIA

Market 14.50 18.06 1.34 0.76

Best-Stock 54.14 83.51 3.78 1.19

BCRP 250.60 120.32 4.07 1.24

EG 27.09 31.00 1.63 0.81

Anticor 2.41×108 6.21×106 5.89 2.29

PAMR 5.14×1015 1.25×106 5.09 0.68

PACS 9.16×1015 1.76×106 5.49 0.56

OLMAR 3.68×1016 2.54×108 15.15 2.06

WMAAMR 6.25×1016 4.35×108 16.31 2.25
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Figure 2 
Trend of Cumulative Wealth Achieved by Various Strategies During the Entire Period
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3.2 Parameter Sensitivity
Now let us evaluate algorithm’s sensitivity to its 
parameters, that is, ε  and w .  Figure 3 shows the 
sensitivity of ε with fixed w=3, C1=1, C2=2 and Figure 4 
shows the sensitivity of w with fixed ε=10, C1=1, C2=2. 
From the former, we can observe that in general the 
total wealth sharply increases when ε approaches 1 and 
flattens when ε cross a threshold. From the latter, we can 

observe that as w increases, the performance initially 
increases spikes with a data-dependant value, and then 
decreases. Moreover, the latter figure also shows that the 
Buy and Hold versions greatly smooth the performance 
with varying w of the underlying experts. All above 
observations also show that it is robust to the choice 
of parameters and is convenient to choose satisfying 
parameters.
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Figure 3 
Parameter Sensitivity Analysis of MAMR-WMAR w.r.t. ε (Fixed w=5, C1=1, C2=2)

3.3 Computational Time
Finally, we evaluate the computational time as shown in 
Table 3. As shown in the table, WMAAMR algorithm 
takes the least times on all datasets. Note that with daily 
frequency, competitors’ average times are acceptable, 
however, their times are not acceptable in the scenario of 
high frequency trading.

Table 3
Summary of Time Complexity Analysis

Methods Time 
complexity Methods Time complexity

UP O(nm) Anticor O(N3m2n)

EG O(mn) PAMR / OLMAR /
PWMAMR O(mn)

WMAAMR O(mn)
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Figure 4 
Parameter Sensitivity Analysis of MAMR-WMAR w.r.t. w (Fixed  ε=10, C1=1, C2=2)

CONCLUSION
This paper proposes a novel online portfolio selection 
strategy named “Weighted Moving Average Asymmetric 
Mean Reversion” (WMAAMR), which exploits “Weighted 
Moving Average Reversion” via on-line learning 
algorithms. The approach can solve the problems of the 
state of the art caused by the single-period symmetric 
mean reversion and achieve satisfying results in real 
markets. It also runs extremely fast and is suitable for 
large-scale real applications. In future, we will further 
explore the theoretical aspect of the mean reversion 
property.
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